首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
罗俊  王芳辉  孔令汉  张瑶  朱红 《功能材料》2015,(7):7100-7102,7108
为了研究Fe3O4形貌与其复合材料电磁吸收性能之间的关系,采用水热法制备了微粒和棒状两种形貌的Fe3O4与石墨烯复合材料。利用X射线衍射(XRD)仪、透射电子显微镜(TEM)和矢量网络分析仪(VNA)对复合材料的结构、形貌以及电磁吸收性能进行了表征。结果表明,纳米Fe3O4棒/石墨烯复合材料相比纳米Fe3O4粒子/石墨烯具有更优异的电磁吸收性能,其在8~18GHz范围内小于-10dB频带宽9.8~17.9GHz,说明材料的微波吸收性能和纳米粒子的形貌有关。  相似文献   

2.
祝海  杨丽  刘洪波  陈惠  夏笑虹 《无机材料学报》2016,31(11):1223-1229
以Ni(NO3)2为Ni源, 利用液相浸渍法在氧化石墨层间吸附Ni2+, 通过H2热还原制备出Ni/还原氧化石墨纳米复合材料。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)及网络矢量分析仪等对样品的结构及性能进行分析和表征, 研究了Ni(NO3)2浓度对材料微观形貌及电磁性能的影响。结果表明, 所制备材料为纳米级Ni颗粒与RGO的复合体, 具有优良的微波吸收性能; 当Ni(NO3)2浓度为1.5 mol/L时, 材料电磁吸收性能最佳, 在2~18 GHz频率范围内, 材料厚度为2 mm时, 反射损耗(RL)小于-5 dB的频率范围可达9 GHz, RLmax可达-40 dB。  相似文献   

3.
二氧化硅/片状金属磁粉壳核粒子制备及电磁特性   总被引:3,自引:3,他引:0       下载免费PDF全文
以正硅酸乙酯为前驱体, 采用溶胶-凝胶工艺对厚度1 μ m、 直径5 μ m左右的片状金属磁性微粉进行表面改性, 获得SiO2 /金属壳-核结构复合粒子。用SEM、 TEM、 RA-IR等方法对磁粉表面SiO2纳米粒子膜的形貌、 结构进行表征, 并对改性前后磁粉/石蜡复合材料的复磁导率和复介电常数等微波电磁参数进行测试。结果表明: SiO2纳米粒子吸附在磁粉表面, 形成高电阻率的包覆膜; 将该微粉按质量比(5 ∶ 1)与石蜡复合, 在2~18GHz频率范围内测量介电常数, 与未改性样品比较, 其介电常数实部平均下降约20, 虚部平均下降约7, 而对应的复磁导率变化较小。用金属磁粉制备1mm厚的吸波涂层, 涂层在8dB的吸收带宽由改性前的3.2GHz (7.0~10.2GHz)增加到改性后的7GHz (7.6~14.6GHz), 改善了吸收剂的吸波性能。   相似文献   

4.
胡月  李盼  吕宏凌  汪明旺  陈金庆 《化工新型材料》2019,47(11):167-170,174
采用溶胶-凝胶法结合流延包覆方法制备纳米二氧化锰(MnO_2)/羧甲基纤维素(CMC)复合膜(纳米MnO_2/CMC复合膜),并对样品进行测试,复合膜催化剂呈MnO_2颗粒状自然堆积,颗粒间无团聚,表面光滑,纳米直径20nm±5nm,是高量子活性纳米MnO_2,MnO_2的含量为28.6%(wt,质量分数)。纳米MnO_2/CMC复合膜具有聚合物CMC的强溶胀吸附性和纳米MnO_2光催化活性,对催化降解罗丹明B印染废水效果明显。研究结果表明,在温度为20℃,pH=4.0,罗丹明B溶液浓度为100mg/L,复合膜用量为0.75g/L条件下,罗丹明B溶液的降解率达86.6%,吸附容量为8.09mg/g,处理后废水中的罗丹明B含量低于0.1mg/L,达到染料废水排入城镇下水道水质标准。  相似文献   

5.
采用两步法(共沉淀法联合溶胶-凝胶法)制备Ni_(0.5)Zn_(0.5)Fe_2O_4纳米吸波材料,探究了溶胶-凝胶法中前驱体的煅烧温度对样品微波吸收性能的影响。利用X射线衍射(XRD)、原子力显微镜(AFM)以及矢量网络分析(VNA)等方法对样品的微观结构和电磁性能进行表征。XRD分析结果表明:当煅烧温度大于650℃时,能够得到纯Ni_(0.5)Zn_(0.5)Fe_2O_4纳米粉体;AFM结果表明:随着煅烧温度的提高,样品颗粒粒径趋于细小化和均匀化;VNA结果表明:在2~12.4GHz范围内,煅烧温度为650℃时,制备的Ni_(0.5)Zn_(0.5)Fe_2O_4表现出最佳的电磁特性,具有优异的微波吸收性能。样品的有效吸波频宽为4.9GHz,最大吸波强度达到-24.94dB。  相似文献   

6.
近年来基于微纳米马达的研究引起了研究者广泛的兴趣其中,对微米尺度的马达研究占多数,而纳米马达的制备更具有挑战性。本研究介绍了一种制备方法简单、原料来源广泛、尺寸可在纳米至微米尺度范围内精确调控的微纳米马达体系。首先合成了尺寸可控的SiO_2纳米颗粒,采用Pickering乳液法制备微米尺寸的胶体囊,裸露的SiO_2进一步催化高锰酸钾(KMnO_4)还原生成二氧化锰(MnO_2)/SiO_2 Janus纳米颗粒,MnO_2催化过氧化氢(H_2O_2)分解产生氧气从而推动马达运动。利用动态光散射(DLS)和透射电镜(TEM)表征了SiO_2模板的尺寸,其在140 nm(SS1)到630 nm(SS5)内可控。通过扫描电镜(SEM)观察所形成的胶体囊表面SS1的分布情况,研究了石蜡与SS1质量比对SS1在胶体囊表面分布的影响。结果显示,当二者质量比达到40:1时,SS1能在石蜡表面实现单层分布,并且有一部分嵌入石蜡中。通过紫外(UV)、DLS、TEM等方法进行表征,证实了自驱动MnO_2纳米马达的Janus结构。通过倒置显微镜观察并使用Image J、MATLAB等软件进行运动分析,发现SS5纳米马达在0.5%H_2O_2溶液中的均方位移比在超纯水中长,且扩散系数从超纯水中的0.56μm~2/s增加到1.26μm~2/s,增加了1.25倍,证实了自驱动MnO_2纳米马达的有效运动。  相似文献   

7.
NiZnCo铁氧体包覆铁填充碳纳米管的吸波性能   总被引:1,自引:0,他引:1  
利用溶胶凝胶法制备了Ni0.5 Zn0.45 Co0.05 FezO4/铁填充碳纳米管复合粉末,实现了Ni0.5Zn0.45 Co0.05Fe2O4纳米颗粒对碳管的包覆.并用同轴法测量了纳米复合粉末与石蜡混合物的电磁参数,其中纳米复合粉末的添加量分别为30%和60%,根据电磁参数计算了材料的反射率.结果表明纳米复合粉末的主要吸波频段在2~6GHz,当纳米复合粉末添加量为60%(质量分数),厚度为2mm时,微波吸收峰值出现在大约4GHz处,达到5.8dB.与纯Ni0.5Zn0.45 Co0.05Fe2O4纳米粉末相比有了比较明显的提高.  相似文献   

8.
采用溶胶-凝胶法制备了(MnCu)组合掺杂W型钡钴铁氧体Ba(MnCu)xCo2-2xFe16O27(x=0.1、0.2、0.3、0.4、0.5)样品。用XRD和SEM对样品的晶体结构、表面形貌、粒径进行了表征,用微波矢量网络分析仪测试了该样品在2~18GHz微波频率范围的电磁参数,根据测量数据计算电磁损耗角正切及得出微波反射率与频率的关系,探讨了该材料的微波吸收性能与电磁损耗机理。研究结果表明,Ba(MnCu)xCo2-2xFe16O27晶粉呈微米级六角片状形貌,煅烧温度1235℃以上的晶体结构为W型,是一种宽频带强损耗微波吸收材料。当x=0.3时,厚度为2.3mm的样品在频率为10GHz处的吸收峰为24dB,10dB以上频带宽度达8.8GHz。样品的微波吸收主要来自畴壁共振、磁化弛豫和自然共振引起的磁损耗,介电损耗较弱。  相似文献   

9.
用静电纺丝和氢气还原法制备FeCo/SnO_(2)复合纳米纤维并使用X射线衍射、扫描电子显微镜、振动样品磁强计和矢量网络分析仪等手段分析表征其结构、形貌、磁性及电磁特性,研究了SnO_(2)含量对复合纳米纤维的吸波性能的影响。结果表明,添加适量的SnO_(2)可显著提高FeCo纳米纤维的吸波性能。用SnO_(2)摩尔含量为20%的复合纳米纤维制备的厚度仅为1.4 mm的涂层,在频率10.95 GHz处最小反射损耗(RL)为-40.2 dB,有效吸收带宽(RL≤-10 dB)为2.64 GHz (9.75-12.39 GHz),厚度减小到1.0 mm的涂层其最大有效吸收带宽为4.16 GHz,频率范围为13.84~18.00 GHz。涂层吸波性能优异的主要原因,是阻抗匹配的改善、磁性FeCo合金与介电SnO_(2)的电磁损耗协同作用、加强的界面极化驰豫以及纳米纤维形成的三维网络结构产生的多重反射与散射。  相似文献   

10.
通过高能球磨法制备Fe_(83.3)Si_4B_8P_4Cu_(0.7)纳米晶软磁合金粉体,研究了球磨时间对粉体结构、形貌、电磁参数及电磁波吸收性能的影响。采用XRD和SEM对粉体的微结构及形貌进行表征和观察,采用矢量网络分析仪在2~18 GHz范围内测量粉体的电磁参数,进而评价其吸波性能。结果表明,Fe_(83.3)Si_4B_8P_4Cu_(0.7)合金经20~140 h球磨后可形成平均颗粒尺寸为4.7~10.9μm的近球形粉体;粉体具有α-Fe纳米晶和非晶相组成的双相复合结构,α-Fe平均晶粒尺寸随球磨时间的延长逐渐减小而后维持在6 nm左右;合金粉体具有优异的软磁性能,经球磨100 h后粉体的饱和磁化强度达到最大值182.3 emu/g;粉体具有高的磁导率、合适的介电常数以及出色的吸波性能,由球磨100 h后的纳米晶粉体/石蜡构成的厚度为2 mm的复合样品在11.5 GHz下具有反射损耗最低值(RL_(min)为-44.0 dB),且有效吸收频率范围为9.2~15.0 GHz,有效吸收带宽可达5.8 GHz。  相似文献   

11.
将二氧化硅作为模板,通过原位聚合-溶剂热-煅烧工艺合成中空碳/Fe3O4磁性量子点复合材料,通过改变硝酸铁的添加量即相对碳含量来调控复合材料的电磁参数从而调节其微波吸收性能。使用扫描电镜(SEM)、透射电镜(TEM)表征了材料的结构和形貌,用拉曼光谱表征了材料的内部结构缺陷和相对石墨化程度,使用X射线晶体衍射(XRD)、X射线光电子能谱(XPS)表征了材料的晶体结构和化学组成。结果表明,厚度为2.55 mm的材料具有7.06 GHz的最大有效吸收带宽(EAB),最小反射损耗值(RLmin)可以达到-43 dB。这种材料优异的微波吸收性能,主要源自于其电磁匹配特性以及介电-磁损耗的协同作用。  相似文献   

12.
以石墨相氮化碳(g-C3N4)和六水合硝酸钴为原料制备Co@CNT复合电磁波吸收剂,调节Co元素含量以提高其电磁波吸收性能。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、扫描电镜(SEM)、能谱分析(EDS)和透射电镜(TEM)等手段表征其微结构和物相组成,使用矢量网络分析仪测量复合物电磁参数并进行Matlab模拟得到反射损耗图。结果表明,Co@CNT-1与石蜡质量比为1:3的材料,其吸波性能最优,厚度为4.1 mm时对电磁波的吸收最强,最小反射损耗(RLmin)为-45.5 dB;厚度仅为1.5 mm的材料,有效吸收带宽(RL<-10 dB)最大为4.42 GHz。  相似文献   

13.
先以高锰酸钾(KMnO4)和硫酸锰(MnSO4·H2O)为原料用电脉冲辅助氧化还原法制备二氧化锰(MnO2)粉末,再以葡萄糖(C6H12O6)为碳源用液相烧结法制备出不同碳包覆量的MnO2/C复合材料,研究了碳包覆量对材料的形貌、结构和电化学性能的影响。结果表明,碳的加入使MnO2晶型由γ型转变为α型,葡萄糖加热分解后生成无定型的碳覆着在二氧化锰颗粒的表面,抑制了晶粒生长而使晶粒细化。充放电测试结果表明,在葡萄糖浓度为1.5 g/L、电流密度为2 A·g-1条件下二氧化锰的比电容为722.2 F·g-1。与包覆二氧化锰前比较,包覆后比电容提高了64.6%。经过4000圈充放电循环后电容保持率为74.72%,表现出良好的电容特性和循环性能。  相似文献   

14.
先水热合成MoS2/CoFe2O4纳米复合吸波材料,再通过合理的物料配比并使用无水葡萄糖作为碳源和还原剂,使MoS2/CoFe2O4复合材料在氮气氛中还原为MoS2/CoFe/C三元纳米复合材料。对这种复合材料的形貌、相结构及电磁参数进行表征、模拟分析其最佳匹配厚度和吸波性能,研究了碳源浓度对复合材料的组成和性能的影响并根据弛豫理论讨论其吸波机制。结果表明,厚度为3 mm的这种复合材料在12.4 GHz处的最低反射损耗可达-42.9 dB;厚度为4 mm时低于-10 dB的频带宽度可达7.1 GHz。  相似文献   

15.
先用十二烷基硫酸钠(SDS)对多壁碳纳米管(MWCNTs)进行表面改性, 然后采用氧化还原沉淀法制得一系列的MnO2/MWCNTs催化剂。考察了催化剂在80~180℃的选择性催化还原(SCR)反应活性, 并通过BET、XRD、FESEM、TEM、XPS和H2-TPR等表征手段对催化剂的结构及性能进行分析。结果显示, MnO2/MWCNTs催化剂在空速210 L/(gcat·h)和温度140~180℃条件下, 脱硝效率达到85%~100%, 这明显优于等体积浸渍法制备的催化剂的低温SCR催化活性, 且10% MnO2/MWCNTs催化剂的活性最优。分析结果表明, MnO2/MWCNTs催化剂中MnO2以纳米片状均匀分散在多壁碳纳米管载体表面; 弱结晶性的结构和高价锰, 较高的表面吸附含氧量及较强的低温区氧化还原能力是10% MnO2/MWCNTs催化剂具有优异低温SCR活性的原因。另外, 和MnOx/MWCNTs催化剂相比, 10% MnO2/MWCNTs催化剂表现出良好的抗水和抗硫性能。  相似文献   

16.
本工作主要研究Mn 2+离子掺杂的类刚玉系氧化物Zn3TeO6(0<x≤2.0)的晶体结构与光学性质和磁性的变化。Zn3-xMnxTeO6粉末样品通过固相反应合成。Mn掺杂量的相图表明, x<1.0时保持单斜(C2/c)结构, 1.0≤x≤1.6为单斜(C2/c)和三方六面体混合相(R-3), x≥1.8时完全转变为R-3相, 且x=2.0时形成ZnMn2TeO6, Te-O和Mn/Zn-O键长增大, 八面体发生更大畸变。X射线粉末衍射结构精修也表明R-3相中Zn/MnO6为畸变八面体。随着Mn 2+掺杂含量的增加, Zn3-xMnxTeO6系列化合物不仅结构发生变化, 其颜色也由浅变深。紫外吸收光谱中随着掺杂浓度的增加, 400~550 nm处的吸收增强, 样品的光学带隙也由3.25 eV (x=0.1)逐渐减小到2.08 eV (x=2.0), 分析表明, 可见区吸收的增强是源于MnO6八面体中Zn/MnO6八面体中Mn 2+离子的d-d跃迁, 导致样品由浅黄色逐渐变为暗黄色。 磁性测试表明, 固溶体的反铁磁转变温度随着Mn 2+掺杂量的提高而逐渐增加, 且掺入的Mn 2+离子以高自旋态 存在。  相似文献   

17.
通过直流电弧放电法制备了高结晶性单壁碳纳米管(SWCNTs),采用溶胶凝胶自燃法制备CoFe2O4,并将两种材料复合制成SWCNTs-CoFe2O4双层吸波材料。使用Raman光谱、XRD、SEM、TEM和矢量网络分析仪对SWCNTs和CoFe2O4的形貌、结构和电磁性能进行了表征,并利用传输线理论分析了SWCNTs-CoFe2O4双层吸波材料在2~18 GHz频带内的微波吸收性能。结果表明,相对于单一材料,SWCNTs-CoFe2O4双层复合材料的吸波性能得到了极大提高。当CoFe2O4作为匹配层、SWCNTs作为吸收层时,通过调节匹配层和吸收层的厚度,SWCNTs-CoFe2O4双层复合材料的最强反射损耗可以达到-61.13 dB,低于-10 dB的吸收带宽达到7 GHz (8~15 GHz)。因此,SWCNTs-CoFe2O4双层复合材料是一种新型的有应用前景的高吸收宽频带吸波材料。  相似文献   

18.
以天然鳞片石墨为原料制备氧化石墨(GO), 应用水热法制备钴锌铁氧体(Co0.5Zn0.5Fe2O4), 并将两者制备成石墨烯(rGO)/Co0.5Zn0.5Fe2O4复合材料。采用X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)研究rGO/Co0.5Zn0.5Fe2O4的结构; 应用透射电子显微镜(TEM)和矢量网络分析仪(VNA)研究不同复合比例对rGO/Co0.5Zn0.5Fe2O4复合材料形貌、电磁损耗特性、德拜弛豫模型及电磁响应行为的影响。结果表明: 复合反应后的GO在XRD图谱中主衍射峰由2θ=9.74°变化为2θ=24.15°, 且红外光谱图中显示含氧官能团消失, 均说明GO成功还原为rGO。透射电子显微镜图中可以看到Co0.5Zn0.5Fe2O4嵌布在rGO上。复合反应过程中, 当钴锌铁氧体的含量增大, 分散性逐渐减弱。Co0.5Zn0.5Fe2O4与GO质量比为2 : 1时制备的rGO/Co0.5Zn0.5Fe2O4复合材料的吸波性能最佳, 在15.11 GHz处反射率达到最小值-36.89 dB, 有效吸波频带宽为3.74。  相似文献   

19.
设计软磁复合材料(SMCs)的绝缘层要兼顾软磁性能和电阻率。本研究以Fe/Ni0.5Zn0.5Fe2O4复合体系为例, 研究界面MnO2氧化剂对样品软磁性能和电阻率的影响, 揭示提高软磁性能和电阻率的SMCs界面放电等离子烧结(SPS)氧化还原机制。采用球磨法制备添加0、0.1wt%、0.3wt%、0.5wt%和1.0wt% MnO2的核壳结构Fe@Ni0.5Zn0.5Fe2O4(MnO2)复合粉末, 随后SPS烧结制备Fe/Ni0.5Zn0.5Fe2O4(MnO2)块体SMCs样品, 通过扫描电镜(SEM)、X射线衍射(XRD)表征该样品的结构特征, 用精密电阻测试仪和振动样品磁强计测试该样品的电阻率和磁性能。研究发现, 添加0.5wt% MnO2的Fe/Ni0.5Zn0.5Fe2O4(MnO2)块体SMCs样品比未添加样品电阻率提高33.7%、饱和磁化强度提高6.9%。研究结果表明, SPS烧结增强SMCs界面快速氧化还原反应, MnO2氧化剂的添加使界面铁氧体离子浓度变化, 降低了B位电子跃迁频率, 提高有效波尔磁子数及B-B磁超交换作用, 表现出同时提高SMCs的软磁性能和电阻率的多重效应。  相似文献   

20.
在5% H2+95% N2气氛下,还原CoFe2O4纳米粒子制备了CoFe2O4-Co3Fe7纳米粒子;以焙烧黄麻纤维得到的多孔碳纤维为碳源用水热法将CoFe2O4纳米粒子负载到多孔碳中,制备出CoFe2O4/多孔碳。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、同步热分析仪等手段对材料进行表征,并使用矢量网络分析仪测量了复合材料的电磁参数和微波吸收性能。结果表明,CoFe2O4-Co3Fe7纳米粒子和CoFe2O4/多孔碳的微波吸收性能明显优于CoFe2O4纳米粒子。CoFe2O4-Co3Fe7纳米粒子的有效频宽(反射损耗<-10 dB的频率宽度)可达4.8 GHz。CoFe2O4/多孔碳的有效频宽可达6 GHz,覆盖了整个Ku波段(12~18 GHz)。这些材料优异的微波吸收性能,可归因于合适的介电常数、大的介电损耗、多孔结构以及介电损耗和磁损耗的协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号