首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
幅相多功能芯片是相控阵雷达的关键部件。为了降低前端收发组件的尺寸和成本,本文采用0.13μm SiGe BiCMOS工艺设计了一款Ku波段幅相多功能芯片,单片集成了接收通道和发射通道,芯片面积2.5 mm×4.5mm。研制的多功能芯片的接收通道含前端低噪声放大器、六位数控衰减器、驱动放大器、单刀双掷开关、六位数控移相器;发射通道含六位数控移相器、单刀双掷开关、驱动放大器、中功率放大器。此外,为了进一步提高芯片的集成度,采用片上集成的电源管理单元和数字逻辑单元实现电源电压变换、衰减器和移相器的逻辑控制以及收发通道切换等功能。实测结果表明:在f1~f2(1GHz带宽)频带内,实现了发射增益17dB,发射功率(Psat)21.7dBm;接收增益-3dB,接收输入功率(P-1)-8.5dBm,接收噪声系数6.5dB;5.625°移相步进,移相精度(RMS)4.5°;0.5dB衰减步进,衰减精度(0.3dB+7%AS)。  相似文献   

2.
介绍了一款自主设计采用0.25μm GaAs PHMET开关工艺制作的的S波段六位数控移相器芯片和金属陶瓷表贴管壳内的设计方法和研制结果.该移相器在工作频带2.8~3.6 GHz内64个移相态的移相精度RMS<1.0°、插入损耗IL<5 dB、输入输出驻波比VSWR<1.5、幅度均衡△IL<0.3 dB、1分贝压缩输入...  相似文献   

3.
数字移相器广泛应用于相控阵雷达中,本文采用一前一后加载支线的方法设计了 11.25°,22.5°和45°移相单元,以3 dB支线耦合器的形式设计90°和180°移相单元,在Ka频段研制出五位数字移相器。该移相器在30 GHz~31 GHz工作频带内,各移相单元实测相移误差最大为6.5°,最小为0.2°;插入损耗最大为11.8 dB,最小为8.6 dB;输入驻波比小于2,整个电路尺寸为110 mm×55 mm×25 mm。  相似文献   

4.
基于0.15μm GaAs E/D pHEMT工艺研制了一款工作频率为2~18 GHz的高精度低功耗超宽带幅相多功能芯片,片内集成了超宽带数控移相器、Gm-boost结构行波放大器、单刀双掷吸收式开关、无源匹配电路、数字SPI接口电路等,整个芯片尺寸为4.0 mm×4.0 mm.提出奇偶模相速补偿的全通网络结构以及基于...  相似文献   

5.
基于0.25 μm GaN HEMT工艺,设计并制作了X波段11.25°和22.5°的小相位移相器单片微波集成电路(MMIC),两个移相器单元均采用低通开关滤波型拓扑结构.最终芯片面积分别为0.9 mm× 1.05 mm和0.95 mm× 1.05 mm.芯片测试结果表明,两个小相位移相器性能良好,且测试结果与仿真结果吻合.在8 ~ 12 GHz频带内,11.25°和22.5°移相器电路的相移精度小于2.8°,输入回波损耗分别优于-15和-12 dB,插入损耗值分别小于1和1.5 dB,幅度波动分别小于0.8和1.3 dB.两个移相器电路的1 dB压缩点输入功率均大于36 dBm,其功率容限优于GaAs HEMT设计的移相器.结果表明,所设计的移相器具有优异的相移精度以及良好的功率性能,可广泛应用于高精度和大功率的雷达系统中.  相似文献   

6.
采用0.18μm GaAs衬底增强/耗尽型赝配高电子迁移率晶体管(E/D PHEMT)工艺研制了一款2~6.5 GHz高精度6位数控移相器.为了达到较小的插入损耗和较小的版图面积,采用桥T型高/低通滤波器拓扑结构对5.625°移相器单元进行设计.采用开关切换全通滤波拓扑结构对11.25°、22.5°、45°、90°、1...  相似文献   

7.
采用南京电子器件研究所4英吋0.25μmGa AsPHEMT工艺技术,设计、制作Ku波段Ga AsMMIC六位数控移相器芯片,芯片尺寸为3mm×1.1mm×0.1mm。在15~17GHz设计频带内,该移相器具有优良的电性能,插入损耗小于9dB,移相精度(RMS)小于1°,输入输出电压驻波比小于1.4。  相似文献   

8.
利用0.15μm GaAs E/D PHEMT工艺研制了一款C-X波段多功能MMIC芯片,集成了2个驱动放大器、1个6位数控移相器、1个6位数控衰减器、4个单刀双掷开关、数字驱动器、均衡器和增益调节电路。其中移相器基于新颖的"非折叠式"兰格耦合器、改进的反射型负载,具有移相精度高、插入损耗小等优点,并内部集成对应的数字逻辑驱动电路,简化使用。多功能芯片测试结果表明:工作频带内移相误差均方根值(RMS)在发射和接收模式下均小于3°,所有移相态增益变化RMS小于0.3dB;衰减误差RMS小于0.5dB,附加调相从-4°~+6°。发射支路增益大于4dB,输出P1dB大于12dBm;接收支路增益大于3dB,输出P1dB大于10dBm。  相似文献   

9.
6~18GHz四位数控移相器单片集成电路的设计   总被引:1,自引:0,他引:1  
设计了6~18GHz频带4bitGaAs数字移相器,着重介绍宽带移相单元的设计。该移相器通过ED02AH0.2μm PHEMT工艺实现。最终的单片数字移相器性能如下:在6~18GHz范围内,11.25°移相单元的移相波动小于±2°;22.5°移相单元的移相波动小于±2.5°;45°的移相波动为小于±5°;90°移相单元的移相波动小于±5°。所有状态的移相平坦度小于20°,移相均方差<7°,插入损耗<13dB,两端口所有态的回波损耗<-10dB(典型值)。  相似文献   

10.
面向毫米波相控阵雷达系统应用,该文基于55?nm?CMOS工艺设计了一款工作于130?GHz的有源矢量(VM)合成移相器.该电路包含宽带正交发生器、可变增益放大和矢量合成模块.为提升移相器相位分辨率和移相精度,该电路可变增益放大采用了具有高频宽带属性的共栅放大结构和具有高增益属性的含中和电容的共源共栅放大结构多级级联的形式.为避免移相器在矢量合成时由自身结构特点产生相位断裂而导致移相范围下降,该设计电路在矢量合成模块中融入了数控人工介质(DiCAD)结构.通过全波电磁仿真对所设计毫米波移相器进行验证,在125~135?GHz频率范围内,所设计移相器平均增益大于1?dB,移相器可由控制电压控制实现全360°范围内5.625°的相位步进,RMS相位误差小于4°,电路面积为1100?mm×600?mm,功耗33?mW.  相似文献   

11.
面向现代通信及相控阵雷达领域的需求,设计了一种移相间隔为22.5°的Ka波段4位开关线型射频MEMS移相器。主要对实现移相功能的四个移相单元进行了设计,采用台阶补偿技术优化移相单元上下通路分工选通,以提供最佳的阻抗匹配;采用直角转角结构,设计了可提高CPW直角性能的延迟线,并对应用该延迟线的4位开关线型移相器进行了总体设计。用HFSS进行建模仿真,结果表明,在0~40 GHz工作频段内,16个状态的插入损耗均小于2.15 dB,回波损耗均大于19.18 dB,驻波比均小于1.25,在40 GHz频点处的相移误差在1.57°以内,整体尺寸为10 mm2。  相似文献   

12.
基于GaN HEMT工艺研制了一款8~12.5 GHz宽带6 bit数字移相器.通过采用优化的宽带拓扑和集总元件,以及在片上集成GaN并行驱动器,提高了移相精度,缩小了芯片的尺寸,减少了控制端数量.测试结果表明,在8~12.5 GHz频带内,全部64个移相状态下,插入损耗小于11 dB,输入回波损耗小于-14 dB,输出回波损耗小于-16 dB,移相均方根误差小于1.8°,幅度变化均方根误差小于0.5 dB.在8 GHz频率下,1 dB压缩点输入功率高达33 dBm.芯片尺寸为5.05 mm×2.00 mm×0.08 mm.  相似文献   

13.
移相器是毫米波相控阵雷达收发系统重要电路,基于安捷伦IC-CAP软件及砷化镓原片工艺线,研究了砷化镓毫米波开关器件测试、建模技术及其应用。采用0.15μm GaAs PHEMT工艺成功制作了一款Ka波段5位数控移相器MMIC,对毫米波数控移相器MMIC集成电路的设计、制作过程进行了阐述,并给出了测试结果。电路设计采用了开关滤波拓扑结构,运用微波探针在片测试系统对芯片进行了实测,在34~36 GHz范围内获得了优异的电性能。给出了移相器的测试曲线,32态均方根移相误差(RMS)5°,插入损耗典型值8 dB,输入/输出电压驻波比系数典型值2,芯片尺寸为2.5 mm×1.5 mm×0.1 mm。  相似文献   

14.
乔明昌  王宗成 《半导体技术》2010,35(8):831-833,851
采用0.25μm GaAs FET芯片工艺成功制作了X波段4位数控移相器MMIC,对该数控移相器MMIC集成电路的设计、工艺制作过程做了阐述,并给出了实际测试参数.电路设计采用了高低通滤波器式移相器拓扑,串联FET与并联FET组合的电路方式.结果表明,在7.5~8.7 GHz频段内插入损耗≤7 dB,电压驻波比≤1.8∶1,开关时间≤30 ns,移相精度22.5°±2°,45°±3°,90°±3°,180°±3°,所有状态均方根移相误差≤5,控制电压-5 V或0 V.  相似文献   

15.
面向毫米波相控阵雷达系统应用,该文基于55 nm CMOS工艺设计了一款工作于130 GHz的有源矢量(VM)合成移相器。该电路包含宽带正交发生器、可变增益放大和矢量合成模块。为提升移相器相位分辨率和移相精度,该电路可变增益放大采用了具有高频宽带属性的共栅放大结构和具有高增益属性的含中和电容的共源共栅放大结构多级级联的形式。为避免移相器在矢量合成时由自身结构特点产生相位断裂而导致移相范围下降,该设计电路在矢量合成模块中融入了数控人工介质(DiCAD)结构。通过全波电磁仿真对所设计毫米波移相器进行验证,在125~135 GHz频率范围内,所设计移相器平均增益大于1 dB,移相器可由控制电压控制实现全360°范围内5.625°的相位步进,RMS相位误差小于4°,电路面积为1100 μm×600 μm,功耗33 mW。  相似文献   

16.
李印  吴锐 《半导体技术》2023,(2):123-131
基于65 nm CMOS工艺设计了一款33.5~37.5 GHz的6 bit有源矢量合成型移相器(VSPS)。该移相器采用Lange类型的90°耦合器作为I/Q信号发生器,其中的电感采用8字形电感实现;此外,矢量合成部分采用电流合成结构,使芯片面积更加紧凑。后仿真结果显示,该移相器覆盖360°移相范围,对于64种移相角度状态,其整个工作频带下的相位均方根(RMS)误差约为0.33°~3.20°,移相附加增益幅度约为-8.38~-4.89 dB,其RMS误差小于0.59 dB,噪声系数约为12.55~15.55 dB,输入反射系数小于-15 dB,输出反射系数小于-7.9 dB,在33.5、35.5和37.5 GHz频率下,其1 dB压缩点输入功率分别为-1.38~0.96、-1.13~0.75和-0.30~1.40 dBm。该移相器核心电路面积仅约为0.11 mm2,在1.2 V的电源电压下,消耗14.6 mW的直流功率,具有面积紧凑、功耗较低、插入损耗适中且精度较高的优势,有利于相控阵系统大规模集成和应用。  相似文献   

17.
本文设计了11.4~12.8GHz频段内五位数字移相器的电路拓扑.采用GaAs MESMET技术建立封须开关模型,对高/低通网络型网络拓扑及场效应管嵌入桥π型电路的移相器拓扑进行仿真,结果表明,当中心须率在12GHz时,达到精确的移相度数,在整个频带内插入损耗小于2dB,移相精度(RMS)小于30,移相前后电压驻波比小于1.35.  相似文献   

18.
据《信学技报》(日)2010年109-361期报道,日本三菱电机开发了All-Pass/BPF切换型MMIC移相器。该MMIC移相器工作于C波段,具有45°移相量,芯片尺寸为0.8 mm×0.6 mm。在4~8 GHz的带宽状态下,获得了插损在1.9 dB以下,反射损耗在14.8 dB以上,移相量47°±3.8°的良好特性。  相似文献   

19.
采用0.5μm GaN HEMT工艺设计了X波段五位数字移相器的单片微波集成电路(MMIC),描述了移相器的设计过程,并进行了版图电磁仿真。该移相器采用高低通滤波器型网络和加载线型结构。利用电路匹配技术设计移相器电路的开关结构,将GaN器件的插入损耗从14 dB降至1 dB。版图仿真结果表明,在9.2 GHz~10.2 GHz频带范围内,均方根移相误差小于3.5°,插入损耗典型值为17.4 dB,回波损耗小于-12 dB,版图尺寸为5.0 mm×4.7 mm。  相似文献   

20.
基于陶瓷方形扁平无引脚(QFN)封装研制出4款X波段GaAs微波单片集成电路(MMIC),包括GaAs幅相控制多功能芯片(MFC)、功率放大器、低噪声放大器、开关限幅多功能芯片.利用QFN技术将这套芯片封装在一起,组成2 GHz带宽的QFN封装收/发(T/R)组件,输出功率大于1W,封装尺寸为9 mm×9 mm×1 mm.通过提高GaAsMMIC的集成度、放大器单边加电、内部端口匹配,创新性地实现了微波T/R组件的小型化.这几款芯片中最复杂的X波段幅相控制多功能芯片集成了T/R开关、六位数字移相器、五位数字衰减器、增益放大器及串转并驱动器.在工作频段内,收发状态下,增益大于5 dB,1 dB压缩输出功率(P-1)大于7 dBm,移相均方根(RMS)误差小于2.5.,衰减均方根误差小于0.3 dB,回波损耗小于-12 dB,裸片尺寸为4.5 mm×3.0 mm×0.07 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号