首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s^(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s^(-1)或温度1025~1050℃、应变速率0.01~0.06 s^(-1)。  相似文献   

2.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

3.
《塑性工程学报》2016,(2):130-135
采用Gleeble-3800热模拟试验机,在温度850℃~1200℃、应变速率0.001s~(-1)~10s~(-1)下进行热压缩实验,研究300M高强钢的热变形行为。根据双曲正弦函数,分析全应变条件下流动应力与Z参数间的关系,得到300M高强钢的变形激活能Q及参数A、n、α的值,建立全应变本构方程。基于动态材料模型,建立300M高强钢的热加工图,并讨论了300M钢组织演化规律。结果表明,考虑应变补偿的本构方程,在实验条件内计算的流动应力与实验所测结果吻合度较高;随变形温度的升高及应变速率的减小,300M钢的奥氏体晶粒尺寸增加;变形温度900℃~1 200℃、应变速率0.001s~(-1)~0.1s~(-1)是300M高强钢较佳的热加工工艺范围。  相似文献   

4.
为了改善6061+Er铝合金的热加工性,通过扫描电镜、透射电镜和Gleeble-3800热模拟试验机,研究了6061+Er铝合金的微观组织,以及当变形温度为375~500℃、应变速率为0.001~10 s^(-1)时的热变形行为。结果表明,锻态6061+Er铝合金中存在微米级初生Al_(3)Er相和起弥散强化效果的纳米级次生AlEr相。建立了6061+Er铝合金热压缩变形过程中的流变应力本构方程,当应变速率为0.001~10 s^(-1)、变形温度为375~500℃时,流变应力计算值与峰值真应力实测值的误差<10%,验证了流变应力本构方程的准确性和可靠性。6061+Er铝合金适宜的热加工范围为:变形温度为375~400℃、应变速率为0.001~0.01 s^(-1)。  相似文献   

5.
以支承辊常用材料铸态Cr5钢为研究对象,在单道次热压缩试验的基础上,对其在不同试验参数下的热变形行为及热加工图进行分析研究。试验中,变形温度为850~1220℃,变形速率为0.01~1 s-1,真应变为0.7。利用试验数据绘制了铸态Cr5钢的真应力-真应变曲线,得出影响流变应力的因素。并通过拟合曲线计算了各待定材料系数,给出了铸态Cr5钢的流动应力方程。最后,基于真应力-真应变曲线,绘制了0.1~0.6应变范围内的热加工图。结果表明:提高变形温度以及减小应变速率可以降低Cr5钢的流变应力,有助于动态再结晶的发生;而随着应变的增加,失稳区域与功率耗散因子变大。Cr5钢高温下最适宜的加工参数区间为:变形温度为1000~1200℃,应变速率为0.03~0.37 s-1。  相似文献   

6.
利用Gleeble−3500热模拟试验机对真空感应(VIM)+电渣重熔(ESR)所得的GH5605合金铸锭进行热压缩实验,研究其在变形温度为950~1200℃、应变速率为0.001~10 s^(−1)、真应变为0.65时的热变形行为。结果表明:铸态GH5605合金的真应力−应变曲线属于加工硬化+动态回复型,分为3个阶段,即Ⅰ剧烈加工硬化阶段、Ⅱ平缓加工硬化阶段、Ⅲ稳态流变阶段。建立的Arrhenius本构方程相关系数(Rr)和平均相对误差(δ)分别为0.95和11.99%,结合热加工图和变形组织分析得出GH5605合金良好的加工区域为变形温度1055~1200℃、应变速率0.01~0.1 s^(−1)。  相似文献   

7.
利用Gleeble-1500D热模拟试验机,在应变速率为0.01~10 s-1,变形温度为1000~1150℃条件下对铸态27Si Mn钢进行等温恒应变速率压缩试验。通过真应力-真应变曲线,分析了应变速率和变形温度对流变应力的影响规律,建立了铸态27Si Mn钢热变形时的本构方程和热加工图。结果表明,铸态27Si Mn钢高温变形时的峰值应力随应变速率的增大和变形温度的降低而升高;变形激活能为Q=369.0 k J/mol;热变形失稳区域集中在变形温度1000~1060℃、应变速率为1~10 s-1的区域内;最优热加工条件为变形温度1130~1150℃,应变速率4~10 s-1的区域,此时表现为典型的动态再结晶,对应的峰值效率达到35%。  相似文献   

8.
通过Gleeble-3800热模拟试验机对25Cr3Mo3NiNbZr钢在变形温度1000~1250℃和变形速率0.001~10 s~(-1)下进行了高温压缩实验,研究了钢的热变形行为,得到了应力-应变曲线,并建立了流动应力本构方程和热加工图,同时观察了变形后的组织。结果表明,25Cr3Mo3NiNbZr钢在热压缩过程中的变形行为可用双曲正弦函数来描述,其平均变形激活能为415.6 kJ/mol。通过热加工图可以直观地看出热变形失稳区,并且获得了易于再结晶的参数范围,即变形温度为1050~1125℃,应变速率为0.001~0.01 s~(-1)。当应变速率为1 s~(-1)且变形温度从1000℃升至1250℃时,晶粒尺寸逐渐增加;当温度为1200℃且应变速率从0.001 s~(-1)增至10 s~(-1)时,晶粒尺寸逐渐减小。  相似文献   

9.
采用热压缩试验研究了铸态C-276镍基高温合金在950~1250℃和0.01~10 s~(-1)条件下的热变形行为。结果表明:该合金的热变形流变应力随着变形温度的增加及应变速率的降低而减小;当变形条件为1250℃、0.1 s~(-1)时,合金在热压缩过程中发生了动态应变时效。基于流变应力数据建立了合金的热变形本构方程;基于动态材料模型建立了合金在不同应变下的热加工图。通过加工图和微观组织观察优化了合金的热变形参数。合金的表观激活能为497k J/mol铸态C-276合金适宜的热加工区域为1050~1250℃和应变速率0.1~1.0 s~(-1)。  相似文献   

10.
采用Gleeble-1500D热模拟试验机,在变形温度为900~1250℃、应变速率为0.001~1 s^-1的条件下对铸态ER8车轮钢进行热压缩试验,得到真应力-真应变曲线。结果发现:其真应力-真应变曲线符合动态再结晶型软化机制,变形初始阶段,材料发生硬化,真应力快速增加,随着变形的继续,材料发生动态回复,加工硬化速率减缓;在材料变形过程中,材料畸变的应变储存能增加,动态再结晶激活,真应力迅速降低,后硬化及软化达到动态平衡。并分析了变形温度和应变速率对该材料高温下真应力的影响,发现真应力的大小随着变形温度的升高及应变速率的降低而减小。通过对试验数据的归纳整理得出,铸态ER8车轮钢的热变形激活能为258.4 k J·mol^-1。建立了Arrhenius双曲正弦本构方程,用作图法求解加工硬化速率,找出峰值应变及临界应变,基于此建立动态再结晶体积分数模型。其能精准地预测此材料的高温软化行为,为有限元数值模拟提供了理论基础。  相似文献   

11.
用Gleeble 3180热模拟试验机对022Cr钢的热变形行为进行研究,揭示了变形抗力与变形程度、变形温度和应变速率的关系。在950~1200 ℃温度范围和应变速率为0.001~5 s-1下进行热压缩,并利用动态材料模型(DMM)建立了022Cr钢热变形的工艺图。结果表明,随着变形温度的升高和应变速率的降低,022Cr钢的流动应力降低。根据流动应力曲线数据计算其变形激活能为381.615 kJ/mol。当应变不小于0.5时,022Cr钢热加工的最佳变形条件有两个区域,第一个区域在温度范围1100~1200 ℃,应变速率范围0.001~0.01 s-1内,第二个区域在温度范围1130~1180 ℃,应变速率范围1~5 s-1内,其功耗效率都能达到0.4以上。  相似文献   

12.
采用Gleeble-3800,对铸态309L不锈钢在900~1 100℃、0. 01~10 s-1进行热压缩模拟,得到实验钢的热变形应力应变曲线、建立其相应的本构方程和热加工图。结果表明:309L不锈钢的流动应力,对其变形温度和应变速率更敏感;根据Arrhenius模型构建铸态309L不锈钢峰值应力下,相应的本构方程,计算得到其热变形激活能为353. 27 k J/mol;依据相应的变形曲线,绘制本实验钢的热加工图,得出当温度处于1 050~1 100℃、应变速率在0. 01~0. 05 s-1时和温度在1 030~1 100℃、应变速率在3. 1~10 s-1时,309L不锈钢具有最佳的工艺,有良好的热加工性能。  相似文献   

13.
利用Gleeble−3500热模拟机的热压缩实验,研究了铸态GH2132合金在变形温度为1173~1423 K和应变速率为0.001~10 s^(−1)条件下的热压缩变形行为和微观组织演化规律,分析该合金在不同变形条件下的热变形激活能Q值、应变速率敏感指数m值、温度敏感指数s值的变化规律,基于动态材料模型(DMM)建立热加工图,结合微观组织确定出最佳热加工参数。结果表明:随着变形温度的升高、应变速率的降低,流变应力减小,GH2132合金为应变速率和温度敏感型材料。提高变形温度、降低应变速率有利于获得均匀分布的等轴晶粒。结合热加工图和高温变形微观组织确定,铸态GH2132合金合理的热变形参数所对应的变形温度和应变速率区间分别为1295~1418 K和3.07~10 s^(−1)。  相似文献   

14.
针对大型特厚F316H不锈钢阀门锻件易出现粗晶、混晶和探伤无底波等难题,对其高温下的流变行为进行了研究,以探索最佳的热加工变形工艺参数来指导实际生产应用。采用Gleeble-1500D热模拟试验机,在应变速率为0.001~1 s^(-1)、变形温度为950~1250℃条件下开展了热压缩变形试验。基于Arrhenius模型,建立了高温流变应力本构方程,并计算得到热变形激活能为393.857 kJ·mol^(-1)。基于DMM动态材料模型,建立了应变量为0.8的热加工图,在变形温度为1100~1150℃、应变速率为0.005~0.01 s^(-1)时,功率耗散因子达到峰值,结合微观金相分析,该变形条件下晶粒发生了充分的动态再结晶,可作为热加工的主加工区域。结合热加工图,设计了核电不锈钢阀体锻件(规格为12寸)的锻造工艺,并经生产验证得到了晶粒度、无损探伤和力学性能优异的锻件。  相似文献   

15.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

16.
在热模拟试验机上对铸态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围为900~1200 ℃,应变速率范围为10-3~1 s-1,测试了其真应力-真应变曲线并对曲线上的应力σ突降进行了解释。基于动态材料模型建立了合金的热加工图,结合微观组织观察,确定了3个不同区域的高温变形机制:温度900~1030 ℃、应变速率小于0.1 s-1时,变形机制为动态回复和连续动态再结晶;温度大于1030 ℃、应变速率小于0.1 s-1时,功率耗散效率η出现峰值,除了动态回复和连续动态再结晶,还出现碳化物溶解现象;高应变速率(大致在0.01~1 s-1之间)区,是合金的变形失稳区域,较低温度时失稳机制为局部流动,高温失稳与碳化物溶解有关,=1 s-1时组织演变特征是项链状动态再结晶  相似文献   

17.
为了研究DB685钢的热变形特性,选取并建立了DB685钢的高温应力应变本构方程,利用Gleeble-1500热模拟机对DB685钢在变形温度为900~1200℃、应变速率为0.01~10 s~(-1)、最大应变量70%条件下进行压缩实验,根据建立的本构方程,绘制DB685钢的热变形加工图,利用所建立的加工图,分析了不同温度和应变速率下合金的热成形性能,结果表明:随着变形温度的升高和应变速率的降低,合金的流变应力下降,动态再结晶更容易发生;DB685钢在1125℃温度以上,并且在对应的应变速率下,耗散系数存在峰值;随着应变的增大,其耗散系数略有增大,失稳区减小,但热加工图的整体趋势保持一定。因此对于工业热加工,建议变形温度为1125~1175℃,应变速率高于0.032 s~(-1)。  相似文献   

18.
应用加工图技术优化阻燃钛合金高温变形工艺   总被引:2,自引:1,他引:1  
在热模拟试验机上对铸态和挤压态组织的阻燃钛合金(Ti-35V-15Cr-Si-C)进行了等温恒应变速率热压缩试验,温度范围铸态为900~1200 ℃、挤压态为900~1150 ℃,应变速率范围为10-3~1 s-1,测试了真应力-真应变曲线并对其形成机制进行了分析。基于动态材料模型建立了2种状态合金的热加工图并进行分析。结果表明:铸锭开坯较优的热加工工艺是挤压成形;与铸态合金相比,挤压态合金发生连续动态再结晶的工艺条件范围明显扩大,并且显著抑制了局部塑性流动失稳的发生;由于高温下碳化物溶解而产生的合金基体变脆不能通过工艺方法消除,为了避免表面开裂,热加工应尽量选择变形温度低于1030 ℃进行  相似文献   

19.
利用Gleeble3180热模拟试验机,在变形温度为950~1100 ℃,应变速率为0.001~1 s-1,真应变为0.7的条件下,对X12CrMoWVNbN钢进行了高温单向热压缩试验。通过不同条件下的高温流变曲线分析了变形温度和应变速率对试验钢热变形力学行为的影响。以Arrhenius方程为本构模型,建立了能够预测该钢流动应力的本构方程。基于动态材料模型和试验参数、结果,绘制了该钢不同应变量下的热加工图并结合图进行了组织分析。结果表明,流变峰值应力和稳态应力随温度降低或应变速率升高而升高;功率耗散系数随应变速率降低和变形温度的升高而增大;最优热加工区域功率耗散系数η的值都在0.4以上,且这些区域的变形组织晶粒均匀细小;0.3、0.4、0.5和0.6应变下的最优热加工区域都处于变形温度1050~1100 ℃、应变速率0.001~0.003 s-1的范围。  相似文献   

20.
采用Gleeble-3800热模拟试验机,通过热压缩试验研究了变形温度900~1200 ℃、应变速率0.001~10.0 s-1时,Maraging250钢的热变形行为,综合考虑摩擦效应和变形热效应,对流变应力曲线进行摩擦修正和温度修正,建立双修正条件下的Maraging250钢本构方程和热加工图,并针对真应变为1.2的热加工图分析了试验钢在不同变形条件下的微观组织变化。结果表明,在相同试验条件下,变形温度降低或应变速率升高,摩擦效应对试验钢流变应力影响越显著;变形热仅在低温、高应变速率条件下对流变应力有显著影响。由变形热引起的最大温升约80 ℃、流变应力最大变化约20 MPa。利用双修正的流变应力曲线计算出试验钢的热变形激活能为393.552 02 kJ/mol,并建立了Z参数方程和本构方程,绘制了真应变ε=0.4、0.8和1.2的热加工图。结合微观组织分析,Maraging250钢在1000~1125 ℃、0.001~1.0 s-1范围内能获得均匀细小的动态再结晶组织,具有较佳的热加工性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号