首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
两步阳极氧化法制备多孔阳极氧化铝膜   总被引:6,自引:1,他引:5  
直流恒压下,在酸性溶液中对铝实施两步阳极氧化制备了多孔氧化铝膜。采用扫描电镜(SEM)、原子力显微镜(AFM)对制备的多孔氧化铝膜进行形貌分析,孔径在纳米级且孔分布具有高度均匀性。采用SEM对试样进行观察,分析了工艺对多孔氧化铝膜形貌的影响。利用阳极氧化初期电流密度的变化并结合阳极氧化过程中的试样的SEM照片,分析了多孔氧化铝膜的形成机理。  相似文献   

2.
Wei-En Yang 《Thin solid films》2010,518(24):7545-7550
This study was to evaluate the biocompatibility, as determined by corrosion resistance and cell responses, of TiO2 nano-mesh layer on polished Ti surface. Results showed that a TiO2 nano-mesh layer was formed on the anodized Ti surface through electrochemical anodization treatment. In comparison to the polished Ti surface, the presence of TiO2 nano-mesh layer on the anodized Ti surface increased the corrosion potential and decreased the corrosion rate and passive current in simulated body fluid. The nano-mesh layer also caused better cell adhesion and spreading, as well as faster cell proliferation and initial differentiation. Overall, this TiO2 nano-mesh layer improved the biocompatibility of Ti surface.  相似文献   

3.
硅掺杂TiO2纳米管阵列的制备及光电催化活性的研究   总被引:1,自引:0,他引:1  
通过电化学沉积,在阳极氧化法制备的高度有序TiO2纳米管阵列表面均匀地沉积Si元素.扫描电子显微照片显示Si掺杂的TiO2纳米管垂直于基底定向生长.X射线衍射分析表明,所引入的Si可能掺入到TiO2的晶格中,因而提高了TiO2的热稳定性,抑制了金红石相的生成及晶粒的长大.紫外-可见漫反射分析表明Si掺杂的TiO2纳米管吸收边带发生了明显的蓝移,并且在紫外区的吸收强度明显增强.与未掺杂的TiO2纳米管相比,Si掺杂TiO2纳米管电极的紫外光电化学响应显著提高,其光电流密度是未掺杂的1.48倍.硅掺杂TiO2纳米管阵列光电催化降解五氯酚的动力学常数(1.651h-1)是未掺杂TiO2纳米管电极(0.823h-1)的2.0倍.  相似文献   

4.
为了提高TiO2/Ti光电极在可见光下的光电催化活性,采用阳极氧化法制备了一种新型的硫掺杂TiO2/Ti光电极.采用扫描电子显微镜、X射线衍射、X射线荧光光谱等技术对光电极进行了表面形貌、结晶形态、晶粒尺寸、硫的掺杂量和价态以及吸光性能表征.研究表明:硫掺杂TiO2/Ti光电极的最佳制备条件为:成膜电压160V、电流密度100mA/cm2、Na2SO3质量浓度750mg/L;所制备的光电极具有良好的光电催化氧化降解邻苯二甲酸二甲酯活性,并能有效地矿化其中间产物;与TiO2/Ti电极相比,硫的掺杂可以显著提高其在可见光下的光电催化性能.  相似文献   

5.
Despite one-dimensional (1D) semiconductor nanostructure arrays attracting increasing attention due to their many advantages,highly ordered TiO2 nanorod arrays (TiO2 NR) are rarely grown in situ on Ti substrates.Herein,a feasible method to fabricate TiO2 NRs on Ti substrates by using a through-mask anodization process is reported.Self-ordered anodic aluminum oxide (AAO) overlaid on Ti substrate was used as a nanotemplate to induce the growth of TiO2 NRs.The NR length and diameter could be controlled by adjusting anodization parameters such as electrochemical anodization voltage,anodization time and temperature,and electrolyte composition.Furthermore,according to the proposed NR formation mechanism,the anodized Ti ions migrate and deposit in the AAO nanochannels to form Ti(OH)4 or amorphous TiO2 NRs under electric field,owing to the confinement effect of the template.Photoelectrochemical tests indicated that,after hydrogenation,the TiO2 NRs presented higher photocurrent density under simulated sunlight and visible light illuminations,suggesting their potential use in photoelectrochemical water splitting,photocatalysis,solar cells,and sensors.  相似文献   

6.
《Materials Letters》2007,61(11-12):2385-2388
NiTi was galvanostatically anodized in acetic acid to increase the oxide film thickness for improving corrosion resistance. The galvanostatic anodization behavior of NiTi in acetic acid differed markedly from that of Ti. In particular, the anode potential reached was much lower for NiTi, and thus only thin oxide films could be obtained. With a suitable choice of anodizing conditions, the anodic oxide film formed had a thickness of 20–25 nm, as determined by profilometric measurement. Atomic force microscopy (AFM) revealed that the surface roughness was increased after anodization. Analysis by X-ray photoelectron spectroscopy (XPS) showed a low Ni/Ti ratio of 0.04 at the anodic oxide surface versus a value of 0.30 for bare NiTi. Electrochemical impedance measurements of the anodized sample in Hanks' solution at 37 °C recorded a 9-fold increase in polarization resistance, and cyclic polarization tests also recorded a matching reduction in the passive current density. These observations indicate that anodization of NiTi can serve as a simple low-temperature method to enhance the corrosion resistance of NiTi when used as an implant material.  相似文献   

7.
We have carried out a systematic investigation into the formation of nanoscaled patterns in titania (TiO2) templates under dc anodization of Ti in HF acid. At lower acid concentrations (around 0.5 wt% HF) either pores or tubes form at the surface of anodized titanium foil. The pores or nanotubes are separated from the bottom Ti layer by a thin barrier layer of TiO2. The critical voltage where the transition from pores to tubes occurs has been determined. It is observed that the transition voltage shift towards higher voltages as acid concentration is increased, with pore formation disappearing altogether at high acid concentrations. We have also carried out a systematic investigation into the dependence of pore and tube parameters on the applied dc anodization voltage. Our results indicate that the barrier layer thickness, pore and tube length increase as a function of applied voltage.  相似文献   

8.
Many conventional anodic aluminum oxide (AAO) templates were performed using two-step direct current anodization (DCA) at low temperature (0–5 °C) to avoid dissolution effects. This process is relatively complex. Pulse anodization (PA) by switching between high and low voltages has been used to improve wear resistance and corrosion resistance in barrier type anodic oxidation of aluminum or hard anodization for current nanotechnology. However, there are only few investigations of AAO by hybrid pulse anodization (HPA) with normal-positive and small-negative voltages, especially for the one-step anodization, to shorten the running time. In this article, the effects of temperature and voltage modes (DCA vs. HPA) on one-step anodization have been investigated. The porous AAO films were fabricated using one-step anodization in 0.5 M oxalic acid in different voltage modes including the HPA and DCA and the environment temperature were varied at 5–15 °C. The morphology, pore size and oxide thickness of AAO films were characterized by high resolution field emission scanning electron microscope. The pore size distribution and circularity of AAO films can be quantitatively analyzed by image processing of SEM. The pore distribution uniformity and circularity of AAO by HPA is much better than DCA due to its effective cooling at relatively high temperatures. On the other hand, increasing environment temperature can increase the growth rate and enlarge the pore size of AAO films. The results of one-step anodization by hybrid pulse could promote the AAO quality and provide a simple and convenient fabrication compared to DCA.  相似文献   

9.
[1]K.E.Healy and P. Ducheyne: J. Colloid Interface Sci.,1992, 150, 404. [2]B.Kasemo and J.Lausmaa: Int. J. Oral Maxillofac. Implants, 1988, 3, 247. [3]K.de Groot, R.Geesink, C.P.A.T.Klein and P.Selekion: J. Biomed. Mater. Res., 1987, 21, 1375. [4]R.G.Geesink, K.de Groot and C.P.A.T.Klein: Clin. Orthop. Rel. Res., 1987, 225, 147. [5]I.Zhitomirsky and L.Gal-Or: J. Mater. Sci. Mater. Med., 1998, 8, 213. [6]M.Shirkhanzadeh: J. Mater. Sci. Let., 1991, 10, 1415. [7]H.M.Kim, F.Miyaji, T.Kokubo and T.Nakamura: J. Biomed. Mater. Res., 1996, 32, 409. [8]P. Li, C.Ohtsuki, T.Kokubo, K.Nakanishi, N.Soga, T.Kanamura and T.Yamamura: J Am. Ceram. Soc.,1997, 75, 2094. [9]A.Cigada, M.Cabrini and P. Pedeferri: J. Mater. Sci. Med., 1992, 3, 408.  相似文献   

10.
Sulfur-doped TiO(2)/Ti photoelectrodes were prepared by anodization and characterized by SEM, AFM, XRD, XPS, UV-vis and SPS. The results of investigation indicated that S(4+) and S(6+) were dispersed on the surface of TiO(2) nanoparticles. The doping with an appropriate amount of sulfur expanded the response range of TiO(2)/Ti photoelectrodes to visible light, and enhanced the separation of photoinduced electrons from cavities. The photoelectrocatalytic performance test run with sulfur-doped TiO(2)/Ti photoelectrodes under Xenon light indicated that Na(2)SO(3) concentration of 750 mg/L and voltage of 160 V were the optimal conditions for preparation of sulfur-doped TiO(2)/Ti photoelectrodes.  相似文献   

11.
Yibing Xie  Li Min Zhou  Haitao Huang   《Materials Letters》2006,60(29-30):3558-3560
Self-organized and highly-ordered TiO2 nanotube array with disjunctive wall-hole structure has been synthesized from titanium foil by potentiostatic–galvanostatic anodization process. The morphology and microstructure of the TiO2 layer depend greatly on the electrolyzing parameters and electrolyte components. TiO2 formation mechanism by anodization oxidation is discussed. The crystallized TiO2/Ti nanotube electrode exhibited a significant enhancement of photoelectrochemical current response in comparison with micrometer-sized TiO2/Ti multiporous electrode. Such kind of TiO2 nanotube will have many potential applications in various areas as an outstanding photoelectrochemical material.  相似文献   

12.
We have investigated the conditions of the formation of tubular layers of nanoporous TiO2 (NPTO) by the anodic oxidation of Ti in a 1% ammonium fluoride solution in ethylene glycol. The results demonstrate that increasing the anode current density and anodization time increases the nanotube diameter. A model has been proposed for the formation of tubular NPTO layers. The model builds on the concept of anisotropic Ti etching. The rate of the formation of the tubular structure of TiO2 has been shown to be limited by the oxide film growth rate under the conditions of this study.  相似文献   

13.
F掺杂TiO2纳米管阵列的可见光催化活性和电子结构   总被引:1,自引:0,他引:1  
采用电化学阳极氧化法,在纯Ti表面一步制得原位生长的F掺杂TiO2纳米管阵列.对煅烧后样品进行扫描电镜(SEM)、X射线多晶衍射(XRD)表征.结果表明,所得TiO2纳米管排列整齐、平均管径约40 nm,平均管长约700 nm.XPS蚀刻分析发现,少量F原子以F-Ti-O键的形式掺杂进了TiO2晶格,同时产生活性物质T...  相似文献   

14.
Nb掺杂Bi4Ti3O12层状结构铁电陶瓷的电行为特性研究   总被引:3,自引:0,他引:3  
采用固相烧结工艺制备了Nb5+掺杂的Bi4Ti3O12层状结构铁电陶瓷.运用XRD 和AFM对Bi4Ti3-xNbxO12+x/2材料的微观结构进行表征,发现所制备的陶瓷均具有单一的正交相结构,抛光热腐蚀表面晶粒的显微形貌表现为随机排列的棒状结构.通过对材料直流电导率与温度关系的Arrhenius拟合,分析丁Bi4Ti3-xNbxO12+x/2的导电机理. Nb5+掺杂提高了材料的介电常数,但居里温度随掺杂含量的增加呈线性下降趋势.DSC结果显示Bi4Ti3-xNbxO12+x/2材料在居里温度处经历了一级铁电相变.样品的铁电性能测试结果表明, Nb5+掺杂Bi4Ti3O12提高了材料的剩余极化Pr,这主要是由于Nb5+取代Ti4+大大降低了材料中氧空位的浓度,使得氧空位对畴的钉扎作用减弱的缘故.  相似文献   

15.
Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.  相似文献   

16.
Ti thin films were anodized in aqueous HF (0.5 wt.%) and in polar organic (0.5 wt.% NH4F + ethylene glycol) electrolytes to form TiO2 nanotube arrays. Ti thin films were deposited on microscope glass substrates and then anodized. Anodization was performed at potentials ranging from 5 V to 20 V for the aqueous HF and from 20 V to 60 V for the polar organic electrolytes over the temperatures range from 0 to 20 °C. The TiO2 nanotubes were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). It has been observed that anodization of the deposited Ti thin films with aqueous HF solution at 0 °C resulted in nanotube-type structures with diameters in the range of 30-80 nm for an applied voltage of 10 V. In addition, the nanotube-type structure is observed for polar organic electrolyte at room temperature at the anodization voltage higher than 40 V. The volatile organic compound (VOC) sensing properties of TiO2 nanotubes fabricated using different electrolytes were investigated at 200 °C. The maximum sensor response is obtained for carbon tetrachloride. The sensor response is dependent on porosity of TiO2. The highest sensor response is observed for TiO2 nanotubes which are synthesized using aqueous HF electrolyte and have very high porosity.  相似文献   

17.
A new anodization based method is developed to fabricate a gradient in TiO2 nanotube diameters and lengths on Ti foil. In the method, the applied anodization voltage is increased step by step, while the Ti foil is immersed into an aqueous solution of hydrofluoric acid progressively during anodization. The gradient TiO2 nanotubes with tube diameters ranging from 55 to 105 nm and lengths ranging from 300 to 500 nm across 12 mm of Ti foil are obtained. The formation mechanism of gradient diameter and length is also discussed. The gradient structure is potentially useful as new cell instructive materials (CIMs) for guided cell movement and culture, novel drug delivery vehicles, size‐selective biosensors, or other sensor applications.  相似文献   

18.
Highly crystallized CaWO4 film has been prepared directly by a galvanic cell method on tungsten substrates in calcium hydroxide aqueous solution without impressed current at room temperature (25 °C). The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the crystallized film has a scheelite-type tetragonal structure, uniform and homogeneous surface. The film shows only the blue emission of 447.5 nm with the excitation light of 250 nm at room temperature. The formation mechanism of CaWO4 film under the simple electrochemical process has been discussed. This method could resolve the repulsion of the electric field on the anode for the mass transfer. The crystal growth in the solution is freer.  相似文献   

19.
Titanium (Ti) implants with TiO2 nanotubular arrays on the surface could regulate cells adhesion, proliferation and differentiation to determine the bone integration. Additionally, the regulation of immune cells could improve osteogenesis or lead in appropriate immune reaction. Thus, we evaluate the behavior of RAW264.7 macrophages on TiO2 nanotubular arrays with a wide range diameter (from 20 to 120 nm) fabricated by an electrochemical anodization process. In this work, the proliferation, cell viability and cytokine/chemokine secretion were evaluated by CCK-8, live/dead staining and ELISA, respectively. SEM and confocal microscopy were used to observe the adhesion morphology. Results showed that the small size nanotube surface was benefit for the macrophages adhesion and proliferation, while larger size surface could reduce the inflammatory response. These findings contribute to the design of immune-regulating Ti implants surface that supports successful implantation.  相似文献   

20.
LC9铝合金常温硬质阳极氧化工艺和氧化膜显微组织的研究   总被引:1,自引:0,他引:1  
对LC9铝合金使用硫酸为主、有机酸为添加剂的混合酸溶液进行了硬质阳极氧化的工艺研究。讨论了电流密度、温度和硫酸浓度等工艺参数对氧化膜的厚度和显微硬度的影响规律,确立了本试验的最佳工艺条件,并分析了工艺参数对氧化膜的厚度和显微硬度的影响机理。此外,利用金相显微镜和扫描电镜观察了氧化膜的组织结构,结果表明:氧化膜均匀、致密,界面较平直;氧化膜表面存在微裂纹和针孔,这是由膜层脆性较大、偏聚的合金相以及氧化膜缺陷和夹杂的溶解等因素造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号