首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
可食性SPI/HPC膜的性能   总被引:2,自引:2,他引:0  
研究了不同浓度的羟丙基纤维素(HPC)对大豆分离蛋白(SPI)膜性能的影响.结果表明,HPC的添加浓度对SPI膜的性能有显著影响.在SPI膜中添加HPC后,膜的抗拉强度明显增加,透光率降低,表面疏水性增大.这表明HPC和SPI分子之间发生了强的相互作用,进一步影响膜的性能.  相似文献   

2.
ABSTRACT:  Edible films and coatings in foods can be used to increase shelf-life and improve organoleptic characteristics of foods by avoiding deterioration of food components and therefore promoting preservation of the final product. This study is the first to investigate the use of different size fillers for the purpose of preparing edible composite films with fillers < 1.0 μm in size. For this purpose, water vapor permeability and mechanical properties of HPMC (hydroxy propyl methyl cellulose) based films with the inclusion of different size MCC (microcrystalline cellulose) fillers were studied. The water vapor permeability of the control HPMC film was 1.2 ± 0.2 g-mm/kPa-h-m2 and did not show a significant change with the addition of fillers. A comparison of mechanical properties of the films with a tensile test showed that tensile strength of the control film, which was prepared using a 3 wt% HPMC solution, increased from 29.7 ± 1.6 MPa to 70.1 ± 7.9 MPa with the addition of 500-nm size particles, while it increased only to 37.4 ± 5.5 MPa with the addition of 3-μm size particles. Also important is that the elongation percentage of the control film did not decrease significantly with the addition of submicron size fillers to the HPMC films. This study showed that the increased surface area per weight of smaller size MCC fillers compared to their larger size counterparts was highly beneficial in terms of film mechanical property improvement.  相似文献   

3.
选取表面改性的纳米TiO2制备大豆分离蛋白(soy protein isolate,SPI)膜,以复合膜的抗拉强度、断裂伸长率、水蒸气透过率、透光性、透氧性、透二氧化碳性为评价指标,通过单因素试验和正交试验优化制膜最佳工艺。结果表明,复合膜的最佳成膜工艺条件为SPI添加量4.5?g/100?mL、改性TiO2添加量2.0?g/100?mL、甘油添加量1.5?g/100?mL,其接触角为115.3°。傅里叶变换红外光谱仪实验结果表明,改性纳米TiO2-SPI复合膜与纳米TiO2-SPI复合膜、普通SPI膜在4 000~600 cm-1波数范围内呈现出相似的红外光谱,且由扫描电子显微镜以及原子力显微镜扫描结果可以看出,与纳米TiO2-SPI复合膜及普通SPI膜相比,改性纳米TiO2-SPI复合膜表面更为致密平整,表面性能表现更佳,改性纳米TiO2-SPI复合膜的结构性质要优于纳米TiO2-SPI复合膜及普通SPI膜。当改性TiO2添加量为2?g/100?mL、365?nm波长紫外灯照射6?h时,复合膜对大肠杆菌和李斯特菌的抑菌性能最强,抑菌率达到91.14%和92.81%。改性纳米TiO2-SPI复合膜具有一定的机械性能和良好的抑菌性能,在食品包装应用方面具有巨大潜力。  相似文献   

4.
在大豆分离蛋白(SPI)膜中添加NaCl、Na2CO3、Na2S2O3、Na3PO4、Na4P2O7、ZnCl2和FeCl3,通过研究膜的水分含量(WC)、可溶性干物质(TSM)、水蒸气透过系数(WVP)及其动态接触角(DCA)系统考察盐对SPI膜亲水性的影响。结果表明:NaCl和FeCl3使得SPI膜的WC分别增加7.4%和15.5%,Na4P2O7、Na2S2O3、Na3PO4、Na2CO3和ZnCl2分别使WC减少18.8%、18.9%、3.8%、7.6%和16.1%;NaCl和Na2S2O3使SPI膜的TSM略有增加,但Na3PO4、Na2CO3、Na4P2O7、ZnCl2和FeCl3使TSM分别降低32.3%、13.7%、7.1%、12.7%和23.9%;Na3PO4、Na4P2O7、Na2CO3和Na2S2O3及ZnCl2分别使WVP增加88.9%、51.4%、36.5%、28.7%和21.0%,NaCl不改变膜的WVP,而FeCl3使膜的WVP值略有下降;NaCl、Na2CO3、Na2S2O3和FeCl3使SPI膜在极性和非极性溶剂中的DCA均降低,而Na3PO4、Na4P2O7和ZnCl2使得SPI膜在极性和非极性溶剂中的DCA均提高。  相似文献   

5.
In this paper, we explore the glycosylation conditions (glucomannan content, reaction time, temperature and humidity) to probe the relationship between glycosylation and mechanical properties of soy protein isolate (SPI) film. The mechanical properties were characterized by studying the tensile strength (TS) and elongation at break (EB). Furthermore, degree of glycosylation, free glucomannan content, surface hydrophobicity, sulfhydryl groups content, lysine and arginine content of glycosylation soy protein with different reaction time were investigated to certify the significant effect of glycosylation on mechanical properties of soy protein film. What is more, the comparison of TS and EB, contact angle values and water vapor permeability of glycosylation SPI (GSPI), SPI and mixture of SPI and glucomannan films showed the excellence of GSPI. At the end, the analysis of scanning electron microscope was applied to reveal the effect of glycosylation on the structure of films. These results suggested that glycosylation with glucomannan is an ideal method to enhance the mechanical properties of soy protein isolate film.  相似文献   

6.
目的 探究淀粉醛(dialdehyde starch,DAS)对大豆分离蛋白(soy protein isolate,SPI)/槲皮素(quercetin,QR)复合膜特性的影响。方法 以青稞淀粉为原料,通过高碘酸钠氧化制备了DAS,以SPI为基质,以DAS和QR为添加物,以拉伸强度、水分阻隔性能、抗氧化性能为指标进行单因素试验,通过响应面优化试验筛选出DAS强化的SPI/QR复合膜最佳制备条件后,对复合膜的微观结构进行表征,并对其物理学性能进行测试。结果 DAS强化的SPI/QR复合膜最佳制备条件为每100 mL蒸馏水中添加SPI 6.00 g、pH为8、DAS 5%、QR 4%、DES 25%(DAS、QR、DES以SPI质量计)。在此条件下,薄膜的拉伸强度为(7.37±0.39) MPa、水蒸气透过系数为(3.54±0.29)×10-11 g/(m·s·Pa)、抗氧化活性为(70.88±0.40)%。结构表征结果表明, DAS的添加使得该复合膜分子间形成了共价亚胺键,表面结构及横断面结构更加致密。此外,该复合膜具有较好的热稳定性、紫外阻隔性、疏水性。结论 D...  相似文献   

7.
The mechanical, hydrophobic and thermal properties of cast films of vicilin-rich protein isolates from three Phaseolus legumes were investigated and compared to that of soy protein isolate (SPI). The influence of heat curing at 85 °C on the properties of these films was characterized. The films of vicilin-rich protein isolates exhibited much less mechanical strength (TS) and elongation at break (EB) and similar film surface hydrophobicity, as compared with those of the SPI film. The heating remarkably improved the TS of these films, and the extent of the improvement much higher than that of the SPI film, while the EB was only slightly affected. The thermal properties of these protein isolate films were variable, and much distinctly affected by the heating of the films, to a various extent, depending on the type of protein isolates. Protein solubility analyses indicated strengthened hydrogen and hydrophobic bondings of these films by the heating. The results suggest that those vicilin-rich protein isolates have good potential to form cast films with mechanical strength comparable to that of SPI film.  相似文献   

8.
摘要:为提高大豆分离蛋白膜的性质,制备以大豆分离蛋白(SPI)为原料的O/W乳液膜,采取单因素实验法比较O/W乳液膜与SPI膜的差异性,探究不同SPI质量浓度(20、30、40、50和60 mg/mL)对O/W乳液膜性能及结构的影响。结果表明:O/W乳液膜的遮光性、机械性能、耐水性及热稳定性要优于SPI膜。随着SPI质量浓度的增加,O/W乳液膜的拉伸强度随之增加,断裂伸长率降低。蛋白质量浓度为60 mg/mL时,O/W乳液膜的抗拉强度达到最大值为7.19 MPa,比蛋白膜的抗拉强度高出33%。利用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和差式扫描量热仪(DSC)对O/W乳液膜蛋白分子间的相互作用进行分析,乳液膜的Tg为100 ℃,且红外光谱中酰胺Ⅲ带和1630 cm-1峰值发生了变化,表明共混组分之间的作用力增强,蛋白质形成了致密且稳定的网络结构。  相似文献   

9.
冷冻保藏对大豆分离蛋白膜机械性能的影响   总被引:2,自引:0,他引:2  
用大豆分离蛋白(SPI)制备可食性包装膜时,在成膜溶液中分别添加单甘酯、葡萄糖制成大豆分离蛋白膜,将其分别在室温下(RH65%)保存2d以上和在冷冻保藏7d后测定机械性能,发现添加这些物质后制得的膜的机械性能均受到影响:含单甘酯的膜的抗拉强度(TS)增加超过25%,断裂伸长率(E)变化不大;而含葡萄糖的膜TS增加了35%以上,E增加了55%以上。冷冻对各种SPI膜的机械性能有不同影响,对含葡萄糖的SPI膜的抗拉强度影响很大,TS下降达50%,对其他SPI膜的影响不太大,这意味着不含葡萄糖的SPI膜可用于冷冻食品包装。  相似文献   

10.
To modify the properties of edible soy protein isolate (SPI) films, 0.5% anthocyanin-rich red raspberry (Rubus strigosus) extract (ARRE) (0.5 g raspberry powder in 95% ethyl alcohol/water/85% lactic acid [80:19:1. v/v/v]) was incorporated into film-forming solutions. ARRE resulted in an SPI film having significantly enhanced tensile strength (P < 0.05) and % elongation at break (P < 0.05), as well as increased water swelling ratio (P < 0.05) and in vitro pepsin digestibility (P < 0.05). The resultant films also showed significantly decreased water solubility and water vapor permeability (P < 0.05). In addition, ARRE increased darkness, redness, and yellowness film appearance as evidenced by a lower L* (P < 0.05), greater positive a* (P < 0.05), and a higher b* (P < 0.05) than the control film. Scanning electron microscopy images revealed that extract-added films had denser and more compact cross-section microstructure. Fourier transform infrared spectra illustrated that ARRE-created hydrogen bonding involved conformational changes of soy protein without destroying its backbone structure. SDS-PAGE electrophoretograms revealed that the extract induced intermolecular interaction of the soy protein monomers. Natural plant extracts would be a promising ingredient to make SPI films with different physicochemical properties and applications. PRACTICAL APPLICATION: This study characterizes the potential physicochemical changes of SPI film with incorporated raspberry extract. Upon the above modification, the resultant film was found to enhance the applications of pure SPI film in food packaging. For example, SPI-ARRE film could prolong the usage life of SPI film due to increased strength, or could be useful as a desiccant (drying agent) such as a water-absorbing sheet for preserving dried foods due to its increased hydrophilic surface and water-swelling ratio. SPI-ARRE film could also be alternately used as a food wrap with unique color.  相似文献   

11.
为了研究超声波联合酶技术提高大豆分离蛋白(Soybean Protein Isolated,SPI)在酸性条件下(pH 4)乳化性能的效果,本文以大豆分离蛋白为原料,以乳化性能和乳状液粒径为衡量指标,确定超声波联合植酸酶-酸性蛋白酶(Ultrasound combined with phytase-acidic protease,Uphy-aci)改性方法的最适宜条件。研究发现,当SPI浓度6%,植酸酶添加量4 U/g,酸性蛋白酶添加量1500U/g,植酸酶与酸性蛋白酶的酶解时间分别为50 min和30 min时,改性后的SPI(pH 4)乳化性能明显增加,乳状液粒度减小;通过表面疏水性(H0)和扫描电镜(SEM)分析了超声波-酶复合改性处理的SPI,发现在酸性条件下,SPI表面疏水性含量为487.78,比未改性提高了71.2%,并呈现破碎均一、多孔的微观结构。因此,超声波与植酸酶-酸性蛋白酶联合改性提高酸性条件下SPI的乳化特性等功能性质,并且拓宽了大豆分离蛋白的应用领域。  相似文献   

12.
为了开发新型大豆蛋白可食膜,将天然减菌剂乳酸链球菌素(Nisin)和植酸加入到大豆蛋白膜中,研究它们对膜的遮光、隔氧、阻湿功能及蛋白质交联度和膜结构的影响。结果表明:添加Nisin会引起大豆分离蛋白膜阻湿性和蛋白质交联度下降,但遮光性和隔氧性增强。植酸对膜的遮光性、阻湿性、隔氧性和蛋白质的交联度的影响与其添加量有关。电镜扫描分析结果表明,大豆分离蛋白膜表面平整光滑,添加了Nisin后,膜中出现复杂纹路,但仍然呈大理石状;继续加入植酸,膜的大理石状结构遭到了破坏。  相似文献   

13.
为探讨超声波对大豆分离蛋白(soybean protein isolate,SPI)结构及大豆分离蛋白形成谷氨酰胺转氨酶(transglutaminase,TG)改性凝胶的影响,研究了超声波处理前后大豆分离蛋白平均粒径、溶解性、表面疏水性、二级结构、微观结构及凝胶特性的变化规律。结果表明:超声波处理使大豆分离蛋白平均粒径减小,溶解性增加,表面疏水性增强,α-螺旋含量降低,无规卷曲含量升高,β-折叠和β-转角无显著变化;超声波处理可以促进大豆分离蛋白形成结构均匀、致密的TG改性凝胶,最佳处理时间为60 min,此时凝胶强度为146.57 g,提高幅度达62.12%,持水性为94.27%,提高幅度为3.66%。相关性分析表明,大豆分离蛋白的溶解性以及其形成TG改性凝胶的凝胶强度、持水性与平均粒径有显著的负相关性。  相似文献   

14.
采用高压微射流技术在不同压力条件下对大豆分离蛋白(SPI)进行处理,分析处理前后SPI结构、功能特性以及乳液性质的变化。结果表明:低压均质处理可使SPI的粒径降低,当均质压力增加至一定程度时,蛋白间的相互作用增加,颗粒粒径增加;均质压力在0~95 MPa范围内随着压力逐渐升高,SPI的溶解性得到了显著改善,而当均质压力增加到125 MPa和155 MPa时,溶解性反而降低;高压均质处理对乳化性的影响与溶解性变化趋势基本吻合;表面疏水性随着压力的增大而增大;内源荧光光谱结果表明,随着均质压力的增大,最大吸收波长红移,荧光强度降低,色氨酸残基暴露于极性环境中; SPI乳液粒径随着均质压力的增大(95 MPa除外)整体依次变小,SPI乳液在压力65 MPa处理时油脂氧化速率最快,SPI乳液在压力125、155 MPa处理时的初级氧化速率要低于未处理的乳液。  相似文献   

15.
Carboxymethylated cellulose nanofibril (CMCNF) is an effective green dispersant to prepare well-dispersed monolayer montmorillonites (MMTs) in water, thereby facilitating the preparation of a high-performance MMT/polymer nanocomposite film. However, not enough attention has been paid to correlating the degree of substitution (DS) of CMCNFs with the mechanical and optical properties of the final nanocomposite films. In this study, a series of homogeneous monolayer MMT nanoplatelet dispersions was prepared initially using CMCNFs with different DS as a dispersant, and the as-prepared CMCNF-dispersed MMT dispersions were then mixed with sodium carboxymethyl cellulose (CMC-Na) to fabricate nacre-like nanocomposite films with different contents of MMTs through self-assembly. The layered nanostructure and optical and mechanical properties of the as-prepared CMCNF-dispersed MMT/CMC-Na nanocomposite films were investigated, which demonstrated that CMCNFs with lower DS have a positive effect on their optical and mechanical properties. This study sheds light on the preparation of MMT-based nanocomposite films with superior optical and mechanical properties.  相似文献   

16.
Rungsinee Sothornvit  Duck Jun An 《LWT》2010,43(2):279-15153
Whey protein isolate (WPI)/Cloisite 30B organo-clay composite films with different amounts of the clay (0, 5, 10, and 20 g/100 g WPI) were prepared using a solution casting method and their properties were determined to assess the effects of clay content on film properties. The resulting films had an opaque appearance, which depended on the amount of clay added, and a similar gloss. However, the composite films were slightly less transparent compared to the transparent neat WPI films. Film properties, such as surface color and optical properties, varied depending on clay content. The haze index of the WPI/clay composite films as assessed by surface reflectance decreased indicating that the surface of the films was more smooth and homogeneous. The tensile and water vapor barrier properties of the composite films were also influenced by the amount of incorporated clay. In addition, WPI/Cloisite 30B composite films showed a beneficially bacteriostatic effect against Listeria monocytogenes.  相似文献   

17.
The effect of the homogenization conditions of the film-forming emulsions and lipid self-association on the physical properties of sodium caseinate films containing oleic and stearic acids was studied. For this purpose, different film-forming emulsions were prepared by using different homogenization methods and were characterized as to particle size distribution and rheological properties. Likewise, mechanical, structural and optical properties and water vapour permeability (WVP) of the obtained films were also determined. While films containing stearic acid showed a laminar-like structure, oleic acid was more homogeneously dispersed in the film matrix. These differences in structure make the stearic acid films less flexible, showing more surface roughness and less gloss and transparency than films containing oleic acid. The film microstructure also affects the WVP. In this sense, for oleic acid films, water barrier efficiency increased when homogenization conditions were more intense, whereas for films containing stearic acid, the opposite effect was observed. This different behavior was attributed to the different kind of lipid self-association in the aqueous media, protein interactions and their impact on the final film microstructure.  相似文献   

18.
以大豆蛋白和明胶为主要原料,采用戊二醛溶液交联方式和戊二醛饱和蒸汽交联制备大豆蛋白基明胶复合膜,通过对两种交联方式制备的复合膜机械性能稳定性和降解性测定,比较分析戊二醛不同交联方式对复合膜机械性能稳定性、降解性及微观结构影响。结果表明,在3个月贮藏期内,戊二醛溶液交联改性、蒸汽交联改性处理复合膜拉伸强度稳定性提高了20.58%、38.51%,延伸率稳定性提高了31.71%、54.49%,水蒸气透过系数稳定性提高了31.74%、52.19%,透氧率稳定性提高了0.24%、18.01%,降解实验中降解速率分别为未经改性处理大豆蛋白基明胶复合膜溶液交联改性处理复合膜蒸汽交联改性处理复合膜。同时,蒸汽交联复合膜表面及拉伸断面形成结构致密的三维立体网络结构。因此,戊二醛蒸汽交联制备的大豆蛋白基明胶复合膜机械稳定性能及微观结构均优于戊二醛溶液交联改性处理复合膜。  相似文献   

19.
Edible films made from membrane processed soy protein concentrates   总被引:2,自引:0,他引:2  
Edible films were prepared from membrane processed soy protein concentrate (MSC) at various film forming solution pHs, and their mechanical, barrier, and physical properties were compared with soy protein isolate (SPI) films. As the film solution pH increased from 7 to 10, the resulted MSC films were more transparent, yellowish, and had lower oxygen permeabilities. However, tensile strength (TS), modulus of elasticity (ME) and water vapor permeabilities of MSC films were not affected by film solution pHs. The values of MSC films prepared at pH 7 were not significantly (P>0.05) different from those of SPI films prepared at alkaline solutions (pH 8-10). The uniform TS and ME values of MSC film over the wide film solution pH ranges were attributed to the higher solubility of MSC at pH 7. For the films formed at neutral film solutions (pH 7.0), MSC films showed significantly (P<0.05) higher elongation value, film solubility, and transparency compared to SPI films.  相似文献   

20.
在室温条件下采用直流磁控溅射方法,在醋酸纤维素(CA)纳米纤维表面沉积纳米银(Ag)薄膜,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对不同溅射功率的纳米银膜的形貌和微结构进行表征;利用X射线衍射分析了纳米银膜的结晶状态;同时研究了在不同溅射功率条件下制备的沉积纳米Ag膜复合纳米纤维的光学透射性能。实验结果表明:纳米结构银薄膜由极其微小的均匀性较好的粒子组成,随着溅射功率的增加,组成纳米Ag薄膜的Ag粒子尺寸增大,薄膜的致密性和均匀性增加;制备的Ag薄膜均呈面心立方的多晶结构,并且结晶性能随着溅射功率的增加而逐渐增加,抗紫外线透射能力明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号