首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
New-generation telecommunications systems are expected to meet the rising user exigencies of mobility and ubiquitous access to multimedia services. As a consequence, 3GPP consortium has introduced the Multimedia Broadcast and Multicast Service (MBMS) concept into 3G/beyond-3G networks. Supporting MBMS in next generation hybrid wireless platforms becomes a challenging issue due to high traffic load deriving from both signaling message exchange and data transmission between multicast sources (BM-SC) and end users. Therefore, in this context, key research issues are surely: effective exploitation of the limited radio spectrums available, coordination of users accessing radio resources, as well as provisioning of desired QoS guarantees. Given the high mobility profiles typical of UMTS users, it clearly appears that the cited target performance can only be achieved through networking solutions based on an overlapped terrestrial-HAP-satellite coverage. An inter-working scenario where HAPs operate in synergy with the UMTS terrestrial and satellite segments seems to be the most promising solution to provide mobile users with MBMS services. Our work, dealing with architectural design options, takes into account many metrics relevant to aspects, such as: frequency allocation, costs in terms of resource utilization, signaling traffic load, number and location of customers, reliability, possible retransmission paths, user mobility, and QoS.Giuseppe Araniti received a degree in Electronic Engineering from the University of Reggio Calabria, Italy, in 2000. He received the Ph.D. in Electronic Engineering from the same University, in March 2004. He is currently a junior researcher at the D.I.M.E.T., of the University of Reggio Calabria, Italy. His major area of research is the traffic and resource management in third and fourth generation mobile radio systems.Antonio Iera graduated in Computer Engineering at the University of Calabria, Italy, in 1991 and received a Master Diploma in Information Technology from CEFRIEL, Italy, in 1992 and a Ph.D. degree from the University of Calabria, Italy, in 1996.Since 1997 he has been with the University of Reggio Calabria, Italy, first as an Assistant Professor and then as an Associate Professor. Currently, he is Professor at the same University. His research interests include Personal Communications Systems, Enhanced Wireless and Satellite Systems.Antonella Molinaro received a degree in Computer Engineering from the University of Calabria, Italy, in 1991, a Master degree in Information Technology from CEFRIEL, Italy, in 1992, and a Ph.D. degree from the University of Calabria, Italy, in 1996. Since 1998 she has been an Assistent Professor first at the University of Messina and then at the University of Calabria. She is currently an Associate Professor at the University Mediterranea of Reggio Calabria, Italy. Her interests include mobile radio systems and inter-working wireless-wired networks.  相似文献   

2.
Wireless Local Area Networks have gained popularity at an unprecedented rate over the last few years. However, as the spectrum of applications they are called to support broadens, their inefficiency in meeting the diverse requirements of a wider range of applications becomes evident. Most existing access mechanisms cannot provide Quality-of-Service (QoS) assurances. Even those that are QoS aware can only provide relative service differentiation. In this work, we propose a dynamic priority medium access scheme to provide time-bounded services. By approximating an ideal Earliest Deadline First (EDF) scheduler, the proposed scheme can offer delay and delay jitter assurances while achieving high medium utilization. Analytical studies and simulation experiments document and confirm the positive characteristics of the proposed mechanism. Orestis Tsigkas received his Diploma in electrical and computer engineering from the Aristotle University of Thessaloniki, Greece in 2002. He is currently working towards his Ph.D. degree in the same department. His research interests include medium access, as well as quality-of-service provisioning. Fotini-Niovi Pavlidou received the Ph.D. degree in electrical engineering from the Aristotle University of Thessaloniki, Greece, in 1988 and the Diploma in mechanical-electrical engineering in 1979 from the same institution. She is currently a Professor at the Department of Electrical and Computer Engineering at the Aristotle University engaged in teaching for the under- and post-graduate program in the areas of mobile communications and telecommunications networks. Her research interests are in the field of mobile and personal communications, satellite communications, multiple access systems, routing and traffic flow in networks and QoS studies for multimedia applications over the Internet. She is being involved with many national and international projects in these areas (Tempus, COST, Telematics,IST) and she has been chairing the European COST262 Action on “Spread Spectrum Systems and Techniques for Wired and Wireless Communications”. She has served as member of the TPC in many IEEE/IEE conferences and she has organized/chaired some conferences like, the “IST Mobile Summit 2002”, the 6th “International Symposium on Power Lines Communications-ISPLC2002”, the “International Conference on Communications-ICT1998” etc. She is a permanent reviewer for many IEEE/IEE journals. She has published about 80 papers in refereed journals and conferences. She has served as guest-editor on special issues as: “Mobile Ad Hoc Networks (MANETs): Standards, Research, Applications” in the International Journal of Wireless Information Networks and “Power Line Communications and Applications” in the International Journal on Communications Systems. She is a senior member of IEEE, currently chairing the joint IEEE VT&AES Chapter in Greece.  相似文献   

3.
This paper evaluates the use of Bluetooth and Java based technologies in ubiquitous computing environments. Ubiquitous computing strongly depends on leveraging appropriate contextual information to users, according to their preferences and the environment in which they reside. We present UbiqMuseum – an experimental context-aware application that provides context-aware information to museum visitors. UbiqMuseum combines the productivity of Java with the universal connectivity provided by Bluetooth wireless technology. We describe the overall architecture and discuss the implementation steps taken to create our Bluetooth and Java based context-aware application. We demonstrate practicality of building a context-aware system by using UbiqMuseum as a proof of concept that integrates a combination of Bluetooth, WLAN and Ethernet LAN technologies. Finally we run some experiments in a small testbed to evaluate the performance and system behaviour. We evaluate the impact on throughput with varying packet size, coding types and device separation distance sending both images and text. We also present our findings in term of inquiry delay with respect to distance. Numerical results show that Bluetooth offers a relatively steady throughput up to 10 m while the inquiry delay does not increase significantly with distance. Juan-Carlos Cano is an assistant professor in the Department of Computer Engineering at the Polytechnic University of Valencia (UPV) in Spain. He earned an M.Sc. and a Ph.D. in computer science from the UPV in 1994 and 2002 respectively. Between 1995–1997 he worked as a programming analyst at IBM's manufacturing division in Valencia. His current research interests include power aware routing protocols for mobile ad hoc networks and pervasive computing. You can contact him at jucano@disca.upv.es. Pietro Manzoni received the MS degree in computer science from the “Universitá degli Studi" of Milan, Italy, in 1989, and the Ph.D. degree in computer science from the Polytechnic University of Milan, Italy, in 1995. He is an associate professor of computer science at the Polytechnic University of Valencia, Spain. His research activity is related to wireless networks protocol design, modeling, and implementation. He is member of the IEEE. C.-K. Toh is currently a Professor and Chair in Communication Networks at Queen Mary University of London, UK. He is also the Director of the UK Ad Hoc Wireless Consortium and Director of the Queen Mary/Fudan Joint Research Lab in Mobile Networking and Ubiquitous Computing. Concurrently, he is also an Honorary Professor with the University of Hong Kong and an Adjunct Professor at Fudan University, Shanghai. Previously, he was the Director of Research with TRW Tactical Systems in California, USA (now Northrop Grumman Corporation) and was responsible for DARPA and Army programs in communications and networking. He had also worked for Hughes Research, ALR, HP, and was a professor at GeorgiaTech and University of California, Irvine. CK is the recipient of the 2005 IEEE Kiyo Tomiyasu Technical Medal Award, for “pioneering contributions to communication protocols in ad hoc mobile wireless networks." He is the author of “Wireless ATM & Ad Hoc Networks" (Kluwer Press, 1996) and “Ad Hoc Mobile Wireless Networks" (Prentice Hall Engineering Title Best Seller, 2001–2003). He is a recipient of the ACM Recognition of Service Award, for co-founding ACM MobiHoc Conference. He is a co-recipient of the Korean Science & Engineering Foundation Best Journal paper Award for his work on ad hoc TCP. CK was formerly the Chairman of IEEE Communications Society Technical Committee on Computer Communications and Chairman of IEEE Subcommittee on Ad Hoc Mobile Wireless Networks. He was an IEEE Expert/Distinguished Lecturer and had served as a Steering Committee Member for IEEE WCNC Conference and IEEE Transaction on Mobile Computing. He was a member of IEEE Communications Society Meetings & Conferences Board. CK was an editor for IEEE Networks, IEEE JSAC, IEEE transactions on Wireless Communications, Journal on Communication Networks, and IEEE Distributed Systems. He is a Fellow of four societies: British Computer Society, the IEE, the Hong Kong Institution of Engineers and the New Zealand Computer Society. He received his Ph.D. degree in Computer Science from Cambridge University, England, and his executive education from Harvard.  相似文献   

4.
Wireless local area networks experience performance degradation in presence of small packets. The main reason for that is the large overhead added at the physical and link layers. This paper proposes a concatenation algorithm which groups IP layer packets prior to transmission, called PAC-IP. As a result, the overhead added at the physical and the link layers is shared among the grouped packets. Along with performance improvement, PAC-IP enables packet-based fairness in medium access as well as includes QoS support module handling delay-sensitive traffic demands. The performance of the proposed algorithm is evaluated through both simulations and an experimental WLAN testbed environment covering the single-hop and the widespread infrastructure network scenarios. Obtained results underline significant performance enhancement in different operating scenarios and channel conditions. Dzmitry Kliazovich received his Masters degree in Telecommunication science from Belarusian State University of Informatics and Radioelectronics in 2002. He is currently working towards the Ph.D. degree in University of Trento, Italy. From September 2005 to February 2006 he was a visiting researcher at the Computer Science Department of the University of California at Los Angeles. He is an author of more than 20 research papers published in international books, journals and conference proceedings. His main research interest lies in field of wireless networking with a focus on performance optimization and cross-layer design. Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, with a thesis on video coding, awarded with the TELECOM Italy prize, and the Ph.D. in Telecommunications from the same university, in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor in Telecommunications at the Dept. of Information and Communication Technology—University of Trento (Italy). In August 2004, he was visiting professor at the State University of Campinas (Brasil). He is author or co-author of more than 60 papers published in international journals, books and conferences, and he is member of the Technical Committee of the International Conference on Communications (from 2003 to 2007) and Global Telecommunications Conference (GLOBECOM2003 and GLOBECOM2004). Dr. Granelli is guest-editor of ACM Journal on Mobile Networks and Applications, special issues on “WLAN Optimization at the MAC and Network Levels” and “Ultra-Wide Band for Sensor Networks”, and Co-Chair of 10th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’04). Dr. Granelli is General Vice-Chair of the First International Conference on Wireless Internet (WICON’05) and General Chair of the 11th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’06). His main research activities are in the field of networking and signal processing, with particular reference to network performance modeling, medium access control, wireless networks, cognitive radio systems, and video transmission over packet networks. He is Senior Member of IEEE and Associate Editor of IEEE Communications Letters.  相似文献   

5.
Multicarrier Code Division Multiple Access (MC-CDMA) techniques were originally proposed at mid of 90's for wideband multi-user communications in wireless environments characterized by hostile propagation characteristics. In this work, the design of a MC-CDMA-based infrastructure is considered for VBR broadband indoor connections with real-time asynchronous multiple access. At the present time, Broadband Fixed Wireless Access (BFWA) standards like IEEE 802.16 and HIPERMAN can bring broadband services inside buildings, but indoor access should be conveniently provided by a local area connection. The capability of MC-CDMA of supporting asynchronous multi-user variable-bit-rate (VBR) transmission is exploited jointly with an efficient and real-time Medium Access Control (MAC) strategy in order to allow a significant number of indoor VBR users to transmit information in CDMA modality with different quality of service (QoS) profiles. Different classes of users are defined at the MAC level. The available radio resources (i.e. the orthogonal subchannels) are selectively attributed to transmitting users depending on their performance achieved at MAC level and measured by an “intelligent” gateway. When the quality level is not satisfactory for one or more users, the AP issues a decrease of the data rate for such users while providing them with an increased number of subcarriers, guaranteeing a slower transmission fostered against frequency-selective channel distortions. The paper presents an overview of the system and tests its performance through extensive simulations. The proposed joint MAC-PHY approach demonstrates good performance in terms of achieved throughput and high flexibility in radio resource management.This work has been partially supported in Italy by the “NETMOBS -Network-supported Mobility for the Student” – Create-NET project funding, 2005. Claudio Sacchi was born in Genoa (Italy) in 1965. He obtained the Laurea degree in Electronic Engineering, and the Ph.D. in Space Science and Engineering at the University of Genoa (Italy). Since August 2002, Dr. Sacchi has been holding a position as assistant professor at the Faculty of Engineering of the University of Trento (Italy). In 2004, he was appointed by the Department of Information and Communication Technology of the University of Trento as leader of the Research Program titled: “Wireless and Satellite Communications”. The research interests of Dr. Sacchi are focused on wideband mobile and satellite transmission systems based on space, time and frequency diversity, multi-user receivers based on non conventional techniques, and high-frequency ultra-wideband satellite communications. Dr. Sacchi is author and co-author of more than 40 papers published in international journals and conferences. He is member of IEEE. Giovanni Berlanda Scorza was born in Trento (Italy) in 1978. He received the Laurea in Telecommunications Engineering in 2002 at the “Politecnico di Milano” Technical University. Since October 2002, he is a Ph.D student at the Information and Communications Technologies (ICT) International Doctorate School of the University of Trento. His research interests mainly concern with specific aspects related to OFDM and MC-CDMA transmission techniques like e.g.: computationally-affordable multi-user receivers, Medium Access Control strategies, multicarrier-based multiplexing of multi-layered MPEG-4 coded video streams, etc. Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, and the Ph.D. in Telecommunications from the same university, in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor in Telecommunications at the Dept. of Information and Communication Technology – University of Trento (Italy). In August 2004, he was visiting professor at the State University of Campinas (Brasil). He is author or co-author of more than 50 papers published in international journals, books and conferences, and he is member of the Technical Committee of the International Conference on Communications (ICC2003, ICC2004 and ICC2005) and Global Telecommunications Conference (GLOBECOM2003 and GLOBECOM2004). Dr. Granelli is guest-editor of ACM Journal on Mobile Networks and Applications, special issue on “WLAN Optimization at the MAC and Network Levels” and Co-Chair of 10th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD'04). Dr. Granelli is General Vice-Chair of the First International Conference on Wireless Internet (WICON'05). His main research activities are in the field of networking and signal processing, with particular reference to network performance modeling, medium access control, wireless networks, next-generation IP, and video transmission over packet networks. Francesco G.B. De Natale received the Laurea in Electronic Engineering in 1990, and the Ph.D. in Telecommunications in 1994, both from the University of Genoa, Italy. In 1995–96 he was Visiting Professor at the University of Trento, Italy and from 1996 to 1999 Assistant Professor at the University of Cagliari, Italy. At present he is Full Professor of Telecommunications at the University of Trento, where he coordinates the didactic activities of the Bachelor and Master Courses in Telecommunications Engineering. Prof. De Natale is Deputy Head of the Dept. of Information and Communication Technologies, where he leads the research activities of the Multimedia Communications Lab. The research interests of Prof. De Natale are focused on image and signal processing, with particular attention to multimedia data compression, processing and transmission. He was General Co-Chair of the Packet Video Workshop in 2000 and is Technical Program Co-Chair of the IEEE Intl. Conf. on Image Processing to be held in 2005. In 1998 he was co-recipient of the IEEE Chester-Sall Best Paper Award. Prof. De Natale is a Senior Member of IEEE.  相似文献   

6.
Quality of service (QoS) support for multimedia services in the IEEE 802.11 wireless LAN is an important issue for such WLANs to become a viable wireless access to the Internet. In this paper, we endeavor to propose a practical scheme to achieve this goal without changing the channel access mechanism. To this end, a novel call admission and rate control (CARC) scheme is proposed. The key idea of this scheme is to regulate the arriving traffic of the WLAN such that the network can work at an optimal point. We first show that the channel busyness ratio is a good indicator of the network status in the sense that it is easy to obtain and can accurately and timely represent channel utilization. Then we propose two algorithms based on the channel busyness ratio. The call admission control algorithm is used to regulate the admission of real-time or streaming traffic and the rate control algorithm to control the transmission rate of best effort traffic. As a result, the real-time or streaming traffic is supported with statistical QoS guarantees and the best effort traffic can fully utilize the residual channel capacity left by the real-time and streaming traffic. In addition, the rate control algorithm itself provides a solution that could be used above the media access mechanism to approach the maximal theoretical channel utilization. A comprehensive simulation study in ns-2 has verified the performance of our proposed CARC scheme, showing that the original 802.11 DCF protocol can statically support strict QoS requirements, such as those required by voice over IP or streaming video, and at the same time, achieve a high channel utilization. Hongqiang Zhai received the B.E. and M.E. degrees in electrical engineering from Tsinghua University, Beijing, China, in July 1999 and January 2002 respectively. He worked as a research intern in Bell Labs Research China from June 2001 to December 2001, and in Microsoft Research Asia from January 2002 to July 2002. Currently he is pursuing the PhD degree in the Department of Electrical and Computer Engineering, University of Florida. He is a student member of IEEE. Xiang Chen received the B.E. and M.E. degrees in electrical engineering from Shanghai Jiao Tong University, Shanghai, China, in 1997 and 2000, respectively, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in 2005. He is currently a Senior Research Engineer at Motorola Labs, Arlington Heights, IL. His research interests include resource management, medium access control, and quality of service (QoS) in wireless networks. He is a Member of Tau Beta Pi and a student member of IEEE. Yuguang Fang received a Ph.D degree in Systems and Control Engineering from Case Western Reserve University in January 1994, and a Ph.D degree in Electrical Engineering from Boston University in May 1997. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida where he got the early promotion with tenure in August 2003 and has been an Associate Professor since then. He has published over one hundred (100) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He is currently serving as an Editor for many journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing, and ACM Wireless Networks. He is also actively participating in conference organization such as the Program Vice-Chair for IEEE INFOCOM’2005, Program Co-Chair for the Global Internet and Next Generation Networks Symposium in IEEE Globecom’2004 and the Program Vice Chair for 2000 IEEE Wireless Communications and Networking Conference (WCNC’2000).  相似文献   

7.
An important objective of next-generation wireless networks is to provide quality of service (QoS) guarantees. This requires a simple and efficient wireless channel model that can easily translate into connection-level QoS measures such as data rate, delay and delay-violation probability. To achieve this, in Wu and Negi (IEEE Trans. on Wireless Communications 2(4) (2003) 630–643), we developed a link-layer channel model termed effective capacity, for the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this paper, we apply the effective capacity technique to deriving QoS measures for more general situations, namely, (1) networks with multiple wireless links, (2) variable-bit-rate sources, (3) packetized traffic, and (4) wireless channels with non-negligible propagation delay. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 20 conferences such as IEEE INFOCOM'05, IEEE ICC'05, IEEE WCNC'05, and IEEE Globecom'04. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Assistant Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

8.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

9.
Wireless multihop mobile networks, also known as ad hoc networks, are characterized by stochastic topology variations. Random movements of mobile hosts in and out of each other's range encumber smooth system operation and impose limitations on the network performance. Various routing protocols suitable for such networks have been proposed however implementation and performance issues are still considered top research priorities. This paper proposes a new reactive protocol that introduces the use of sequence numbers for evaluating validity of cached routing information when source routing and route caching are used. The new protocol reduces the possibility of using and spreading across the network stale routing information therefore reduces the overhead involved in finding a route. To demonstrate the performance of the proposed protocol we compare it, through a detailed simulation model, with Dynamic Source Routing (DSR) protocol which also uses source routing and route caching. Results prove that the proposed protocol effectively reduces use of stale routing information, improving performance compared to DSR in terms of both delivery ratio and routing overhead. Evangelos Papapetrou holds a Diploma and a Ph.D. in Electrical & Computer Engineering from the Aristotle University of Thessaloniki, Greece. He is currently a visiting lecturer in the Computer Science Department at the University of Ioannina, Greece, where he is engaged in teaching and research on Mobile and Satellite Communications and Telecommunications Networks. His research interests include traffic analysis and design of Satellite networks, Internet over Satellites, IP networking, routing in networks with periodic or stochastic varying topologies, MANETs and QoS in wireless mobile systems. He has served as a reviewer in several journals and Conferences relevant to mobile communications. In the past he has participated in Greek and European projects regarding satellite communications. He was also involved in COST Actions 253 and 272 and in many European projects undertaken by the Centre for Research and Technology Hellas (CERTH). He is a Member of IEEE and the Joint VTS & AES Greece Chapter and a member of Technical Chamber of Greece. Fotin-Niovi Pavlidou holds a Diploma and a Ph.D. in Telecommunications networks from the Aristotle University of Thessaloniki where she is currently engaged in teaching and research on Mobile Communications and Telecommunications Networks. Her research interests include traffic analysis and design of networks, performance evaluation and QoS studies of mobile satellite communications and multimedia applications over Internet. She is a permanent reviewer in IEEE journals, she has served as Guest-Editor of Special issues on “Ad-Hoc Networks”, “HAPs and applications”, “PLC Systems and Applications” for International Journals like IJWIN, WPC etc. She is the author of a Chapter on Fixed Access Techniques (TDMA/FDMA) in the Wiley Encyclopedia on Telecommunications (Editor:Prof. John Proakis), and of many editions of COST Actions on “Satellite Systems”, “Spread Spectrum Techniques” etc. She is the Delegate of Greece in the European COST Program on Telecommunications (1998–2004) and served as Chairperson for the COST262 Action “Spread Spectrum systems and techniques for wired and wireless Systems”. She is permanently included in the Program Committee of many IEEE conferences (PIMRC, GLOBECOM, VTC'2001, ISSSTA'2000) and she was the Chairperson of the IST Mobile Summit 2002, the annual conference of EU-Unit E4 in the field of Wireless Communications in Thessaloniki, June 16–20, 2002. She is involved in many European Projects (research or Education): Telematics Applications (INTERVUSE, ATTACH, etc.), IST (ISMAEL, B-Bone, SatNEx, OPERA, etc.), Tempus programs on Wireless Systems for Albania, Bulgaria, Poland. She is a Senior Member of IEEE (Communications and Vehicular Technology Society), currently chairing the Joint VTS & AES Greece Chapter.  相似文献   

10.
This paper explores analytical Radio Resource Management models where the relationship between users and services is mapped through utility functions. Compared to other applications of these models to networking, we focus in particular on specific aspects of multimedia systems with adaptive traffic, and propose a novel framework for describing and investigating dynamic allocation of resources in wireless networks. In doing so, we also consider economic aspects, such as the financial needs of the provider and the users’ reaction to prices. As an example of how our analytical tool can be used, in this paper we compare different classes of RRM strategies, e.g., Best Effort vs. Guaranteed Performance, for which we explore the relationships between Radio Resource Allocation, pricing, provider’s revenue, network capacity and users’ satisfaction. Finally, we present a discussion about Economic Admission Control, which can be applied in Best Effort scenarios to further improve the performance. Part of this work has been presented at the conference ACM/IEEE MSWiM 2004, Venice (Italy). Leonardo Badia received a Laurea degree (with honors) in electrical engineering and a Ph.D. in information engineering from the University of Ferrara, Italy, in 2000 and 2004, respectively. He was a Research Fellow at the University of Ferrara from 2001 to 2006. During these years, he also had collaborations with the University of Padova, Italy, and Wireless@KTH, Royal Institute of Technology, Stockholm, Sweden. In 2006, he joined the “Institutions Markets Technologies” (IMT) Institute for Advanced Studies, Lucca, Italy, where he is currently a Research Fellow. His research interests include wireless ad hoc and mesh networks, analysis of transmission protocols, optimization tools and economic models applied to radio resource management. Michele Zorzi received a Laurea degree and a Ph.D. in electrical engineering from the University of Padova in 1990 and 1994, respectively. During academic year 1992–1993, he was on leave at UCSD, attending graduate courses and doing research on multiple access in mobile radio networks. In 1993 he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University of Ferrara, Italy, where he became a professor in 2000. Since November 2003 he has been on the faculty at the Information Engineering Department of the University of Padova. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, energy constrained communications protocols, and broadband wireless access. He was Editor-In-Chief of IEEE Wireless Communications, 2003–2005, and currently serves on the Editorial Boards of IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, Wiley’s Journal of Wireless Communications and Mobile Computing, and ACM/URSI/Kluwer Journal of Wireless Networks, and on the Steering Committee of the IEEE Transactions on Mobile Computing. He has also been a Guest Editor of special issues in IEEE Personal Communications (Energy Management in Personal Communications Systems) and IEEE Journal on Selected Areas in Communications (Multimedia Network Radios).  相似文献   

11.
Nowadays Wi-Fi is the most mature technology for wireless-Internet access. Despite the large (and ever increasing) diffusion of Wi-Fi hotspots, energy limitations of mobile devices are still an issue. To deal with this, the standard 802.11 includes a Power-Saving Mode (PSM), but not much attention has been devoted by the research community to understand its performance in depth. We think that this paper contributes to fill the gap. We focus on a typical Wi-Fi hotspot scenario, and assess the dependence of the PSM behavior on several key parameters such as the packet loss probability, the Round Trip Time, the number of users within the hotspot. We show that during traffic bursts PSM is able to save up to 90% of the energy spent when no energy management is used, and introduces a limited additional delay. Unfortunately, in the case of long inactivity periods between bursts, PSM is not the optimal solution for energy management. We thus propose a very simple Cross-Layer Energy Manager (XEM) that dynamically tunes its energy-saving strategy depending on the application behavior and key network parameters. XEM does not require any modification to the applications or to the 802.11 standard, and can thus be easily integrated in current Wi-Fi devices. Depending on the network traffic pattern, XEM reduces the energy consumption of an additional 20–96% with respect to the standard PSM. This work has been carried out while A. Passarella was with the Department of Information Engineering of the University of Pisa. Giuseppe Anastasi is an associate professor of Computer Engineering at the Department of Information Engineering of the University of Pisa, Italy. He received the Laurea (cum laude) degree in Electrical Engineering, and the Ph.D. degree in Computer Engineering, both from the University of Pisa, in 1990 and 1995, respectively. His research interests include mobile and pervasive computing, ad hoc and sensor networks, and power management. He is a co-editor of the book Advanced Lectures in Networking (LNCS 2497, Springer, 2002), and has published more than 60 papers in the area of computer networking and pervasive computing, both in international journals and conference proceedings. He is a member of the editorial board of the Journal of Ubiquitous Computing and Intelligence (JUCI), and is currently serving as Vice Program Co-Chair for the IEEE MASS 2007 conference. He has served as general chair for IEEE WoWMoM 2005, Workshops Chair for IEEE PerCom 2006 and IEEE WoWMoM 2006, and program chair for several international workshops. He has also served on the Technical Program Committee of many international conferences. He is a member of the IEEE Computer Society. Marco Conti is a research director at IIT, an institute of the Italian National Research Council (CNR). He co-authored the book “Metropolitan Area Networks” (Springer, 1997) and is co-editor of the book “Mobile Ad Hoc Networking” (IEEE-Wiley 2004). He published in journals and conference proceedings more than 180 research papers related to design, modeling, and performance evaluation of computer-network architectures and protocols. He served as TPC chair of IEEE PerCom 2006, and of the IFIP-TC6 Conferences “Networking2002” and “PWC2003”, and as TPC co-chair of ACM WoWMoM 2002, WiOpt ’04, IEEE WoWMoM2005, and ACM MobiHoc2006. He served as general co-chair of IEEE WoWMoM 2006 and as general chair of ACM REALMAN 2006. Currently, he is serving as general chair of IEEE MASS 2007. He is Associate Editor of Pervasive and Mobile Computing Journal, and he is on the editorial board of: IEEE Transactions on Mobile Computing, Ad Hoc Networks journal and Wireless Ad Hoc and Sensor Networks: An International Journal. Enrico Gregori received the Laurea in electronic engineering from the University of Pisa in 1980. In 1981 he joined the Italian National Research Council (CNR) where he is currently a CNR research director. He is currently the deputy director of the CNR institute for Informatics and Telematics (IIT). In 1986 he held a visiting position in the IBM research center in Zurich working on network software engineering and on heterogeneous networking. He has contributed to several national and international projects on computer networking. He has authored more than 100 papers in the area of computer networks and has published in international journals and conference proceedings and is co-author of the book “Metropolitan Area Networks” (Springer, London 1997). He was the General Chair of the IFIP TC6 conferences: Networking2002and PWC2003 (Personal Wireless Communications) and IEEE Pervasive Computing and Communication (PERCOM) 2006. He served as guest editor for the Networking2002 journal special issues on: Performance Evaluation, Cluster Computing and ACM/Kluwer Wireless Networks Journals. He is a member of the board of directors of the Create-Net association, an association with several Universities and research centers that is fostering research on networking at European level. He is on the editorial board of the Cluster Computing, of the Computer Networks and of the Wireless Networks Journals. His current research interests include: Ad hoc networks, Sensor networks, Wireless LANs, Quality of service in packet-switching networks, Evolution of TCP/IP protocols. Andrea Passarella is a Researcher at the IIT Institute of the National Research Council (CNR), Italy. Before joining IIT, he was a Research Associate at the Computer Laboratory of the University of Cambridge, UK. He received the Ph.D. and M.S. Degrees in Computer Engineering, both from the University of Pisa, Italy, in 2005 and 2001, respectively. His current research is mostly on opportunistic and delay-tolerant networking. More in general, he works on ad hoc and sensor networks, specifically on p2p systems, multicasting, transport protocols, and energy-efficient protocols. His research interests also include mesh networks and wireless access to the Internet. He is Co-Editor of the book “Multi-hop Ad hoc Networks: From Theory to Reality” (Nova Science, 2007). He was TPC Vice-Chair for IEEE REALMAN 2005, ACM REALMAN 2006, and IEEE MDC 2006. He served and is currently serving in the TPC of several international conferences, including IEEE PerCom 2006/07 and IEEE WoWMoM 2006/07, and workshops. He is an Associate Technical Editor for IEEE Communications Magazine. He is a member of ACM SIGMOBILE.  相似文献   

12.
We develop scheduling strategies for carrying multimedia traffic over a polled multiple access wireless network with fading. We consider a slotted system with three classes of traffic (voice, streaming media and file transfers). A Markov model is used for the fading and also for modeling voice packet arrivals and streaming arrivals. The performance objectives are a loss probability for voice, mean network delay for streaming media, and time average throughput for file transfers. A central scheduler (e.g., the access point in a single cell IEEE 802.11 wireless local area network (WLAN)) is assumed to be able to keep track of all the available state information and make the scheduling decision in each slot (e.g., as would be the case for PCF mode operation of the IEEE 802.11 WLAN). The problem is modeled as a constrained Markov decision problem. By using constraint relaxations (a linear relaxation and Whittle type relaxations) an index based policy is obtained. For the file transfers the decision problem turns out to be one with partial state information. Numerical comparisons are provided with the performance obtained from some simple policies. This work was supported by a research grant from Intel Technology India Pvt. Ltd. Munish Goyal obtained his Masters and PhD degree in telecommunications from the Indian Institute of Science, Bangalore, India and the B.E. degree in Electronics and Communication from the Indian Institute of Technology, Roorkee, India. Currently, he is a postdoctoral research fellow at the ARC Center of Excellence for Mathematics and Statistics of Complex Systems, University of Melbourne, Australia. His research interests include modelling, analysis and control problems arising in stochastic systems especially telecommunication systems. Anurag Kumar obtained his B.Tech. degree from the Indian Institute of Technology at Kanpur, and the PhD degree from Cornell University, both in Electrical Engineering. He was then with Bell Laboratories, Holmdel, N.J., for over 6 years. Since 1988 he has been with the Indian Institute of Science (IISc), Bangalore, in the Dept. of Electrical Communication Engineering, where he is now a Professor, and is also the Chairman of the department. From 1988 to 2003 he was the Coordinator at IISc of the Education and Research Network Project (ERNET), India’s first wide-area packet switching network. His area of research is communication networking, specifically, modeling, analysis, control and optimisation problems arising in communication networks and distributed systems. Recently his research has focused primarily on wireless networking. He has been elected Fellow of the IEEE, and the Indian National Science Academy (INSA), both from 2006, and has been a Fellow of the Indian National Academy of Engineering (INAE) since 1998. He is an associate editor of IEEE Transactions on Networking, and of IEEE Communications Surveys and Tutorials. He is a coauthor of the advanced text-book “Communication Networking: An Analytical Approach,” by Kumar, Majunath and Kuri, published by Morgan-Kaufman/Elsevier. Vinod Sharma received his B.Tech in Electrical Engineering from Indian Institute of Technology, New Delhi in 1978 and PhD in Electrical and Computer Engineering from Carnegie Mellon University in 1984. He worked in Northeastern University and University of California at Los Angeles before joining Indian Instutute of Science in 1988 where currently he is a Professor. He has held visiting positions at INRS Montreal, Helsinki University of Technology, Tokyo University of Science, Institute Mittag-Leffler and INRIA, Sophia Antipolis. His current interests are in Communication Networks, Wireless Communications and Queueing Theory.  相似文献   

13.
This paper presents an analytical model for evaluating the statistical multiplexing effect, admission region, and contention window design in multiclass wireless local area networks (WLANs). We consider distributed medium access control (MAC) which provisions service differentiation by assigning different contention windows to different classes. Mobile nodes belonging to different classes may have heterogeneous traffic arrival processes with different quality of service (QoS) requirements. With bursty input traffic, e.g. on/off sources, our analysis shows that the WLAN admission region under the QoS constraint can be significantly improved, when the statistical multiplexing effect is taken into account. We also analyze the MAC resource sharing between the short-range dependent (SRD) on/off sources and the long-range dependent (LRD) fractional Brownian motion (FBM) traffic, where the impact of the Hurst parameter on the admission region is investigated. Moveover, we demonstrate that the proper selection of contention windows plays an important role in improving the WLAN’s QoS capability, while the optimal contention window for each class and the maximum admission region can be jointly solved in our analytical model. The analysis accuracy and the resource utilization improvement from statistical multiplexing gain and contention window optimization are demonstrated by extensive numerical results. Yu Cheng received the B.E. and M.E. degrees in Electrical Engineering from Tsinghua University, Beijing, China, in 1995 and 1998, respectively, and the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada, in 2003. From September 2004 to July 2006, he was a postdoctoral research fellow in the Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada. Since August 2006, he has been with the Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois, USA, as an Assistant Professor. His research interests include service and application oriented networking, autonomic network management, Internet performance analysis, resource allocation, wireless networks, and wireless/wireline interworking. He received a Postdoctoral Fellowship Award from the Natural Sciences and Engineering Research Council of Canada (NSERC) in 2004. Xinhua Ling received the B. Eng. degree in Radio Engineering from Southeast University, Nanjing, China in 1993 and the M. Eng. degree in Electrical Engineering from the National University of Singapore, Singapore in 2001. He is currently pursuing the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Waterloo, Ontario, Canada. From 1993 to 1998, he was an R&D Engineer in Beijing Institute of Radio Measurement, China. From February 2001 to September 2002, he was with the Centre for Wireless Communications (currently Institute for Infocom Research), Singapore, as a Senior R&D Engineer, developing the protocol stack for UE in the UMTS system. His general research interests are in the areas of cellular, WLAN, WPAN, mesh and ad hoc networks and their internetworking, focusing on protocol design and performance analysis. Lin X. Cai received the B.Sc. degree in computer science from Nanjing University of Science and Technology, Nanjing, China, in 1996 and the MASc. degree in electrical and computer engineering from the University of Waterloo, Waterloo, Canada, in 2005. She is currently working toward the Ph.D. degree in the same field at the University of Waterloo. Her current research interests include network performance analysis and protocol design for multimedia applications over wireless networks. Wei Song received the B.S. degree in electrical engineering from Hebei University, China, in 1998 and the M.S. degree in computer science from Beijing University of Posts and Telecommunications, China, in 2001. She is currently working toward the Ph.D. degree at the Department of Electrical and Computer Engineering, University of Waterloo, Canada. Her current research interests include resource allocation and quality-of-service (QoS) provisioning for the integrated cellular networks and wireless local area networks (WLANs). Weihua Zhuang received the Ph.D. degree in electrical engineering from the University of New Brunswick, Canada. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, Canada, where she is a Professor. Dr. Zhuang is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Her current research interests include multimedia wireless communications, wireless networks, and radio positioning. She received the Outstanding Performance Award in 2005 and 2006 from the University of Waterloo and the Premier’s Research Excellence Award in 2001 from the Ontario Government for demonstrated excellence of scientific and academic contributions. She is the Editor-in-Chief of IEEE Transactions on Vehicular Technology and an Editor of IEEE Transactions on Wireless Communications. Xuemin (Sherman) Shen received the B.Sc.(1982) degree from Dalian Maritime University (China) and the M.Sc. (1987) and Ph.D. degrees (1990) from Rutgers University, New Jersey (USA), all in electrical engineering. He is a Professor and the Associate Chair for Graduate Studies, Department of Electrical and Computer Engineering, University of Waterloo, Canada. His research focuses on mobility and resource management in interconnected wireless/wired networks, UWB wireless communications systems, wireless security, and ad hoc and sensor networks. He is a co-author of three books, and has published more than 300 papers and book chapters in wireless communications and networks, control and filtering. Dr. Shen serves as the Technical Program Committee Chair for IEEE Globecom’07, General Co-Chair for Chinacom’07 and QShine’06, the Founding Chair for IEEE Communications Society Technical Committee on P2P Communications and Networking. He also serves as a Founding Area Editor for IEEE Transactions on Wireless Communications; Associate Editor for IEEE Transactions on Vehicular Technology; KICS/IEEE Journal of Communications and Networks; Computer Networks (Elsevier); ACM/Wireless Networks; and Wireless Communications and Mobile Computing (John Wiley), etc. He has also served as Guest Editor for IEEE JSAC, IEEE Wireless Communications, and IEEE Communications Magazine. Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the Outstanding Performance Award in 2004 from the University of Waterloo, the Premier’s Research Excellence Award in 2003 from the Province of Ontario, Canada, and the Distinguished Performance Award in 2002 from the Faculty of Engineering, University of Waterloo. Dr. Shen is a registered Professional Engineer of Ontario, Canada. Alberto Leon-Garcia received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Southern California, in 1973, 1974, and 1976 respectively. He is a Full Professor in the Department of Electrical and Computer Engineering, University of Toronto, ON, Canada, and he currently holds the Nortel Institute Chair in Network Architecture and Services. In 1999 he became an IEEE fellow for “For contributions to multiplexing and switching of integrated services traffic”. Dr. Leon-Garcia was Editor for Voice/Data Networks for the IEEE Transactions on Communications from 1983 to 1988 and Editor for the IEEE Information Theory Newsletter from 1982 to 1984. He was Guest Editor of the September 1986 Special Issue on Performance Evaluation of Communications Networks of the IEEE Selected Areas on Communications. He is also author of the textbooks Probability and Random Processes for Electrical Engineering (Reading, MA: Addison-Wesley), and Communication Networks: Fundamental Concepts and Key Architectures (McGraw-Hill), co-authored with Dr. Indra Widjaja.  相似文献   

14.
IEEE 802.11 Wireless LAN (WLAN) has become a prevailing solution for broadband wireless Internet access while the Transport Control Protocol (TCP) is the dominant transport-layer protocol in the Internet. Therefore, it is critical to have a good understanding of the TCP dynamics over WLANs. In this paper, we conduct rigorous and comprehensive modeling and analysis of the TCP performance over the emerging 802.11e WLANs, or more specifically, the 802.11e Enhanced Distributed Channel Access (EDCA) WLANs. We investigate the effects of minimum contention window sizes and transmission opportunity (TXOP) limits (of both the AP and stations) on the aggregate TCP throughput via analytical and simulation studies. We show that the best aggregate TCP throughput performance can be achieved via AP’s contention-free access for downlink packet transmissions and the TXOP mechanism. We also study the effects of some simplifying assumptions used in our analytical model, and simulation results show that our model is reasonably accurate, particularly, when the wireline delay is small and/or the packet loss rate is low.
Daji QiaoEmail:

Jeonggyun Yu   received his B.E. degree in School of Electronic Engineering from Korea University, Seoul, Korea in 2002. He is currently working toward his Ph.D. in the School of Electrical Engineering at Seoul National University (SNU), Seoul, Korea. His research interests include QoS support, algorithm development, performance evaluation for wireless networks, in particular, IEEE 802.11 wireless local-area networks (WLANs). He is a student member of IEEE. Sunghyun Choi   is currently an associate professor at the School of Electrical Engineering, Seoul National University (SNU), Seoul, Korea. Before joining SNU in September 2002, he was with Philips Research USA, Briarcliff Manor, New York, USA as a Senior Member Research Staff and a project leader for three years. He received his B.S. (summa cum laude) and M.S. degrees in electrical engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992 and 1994, respectively, and received Ph.D. at the Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor in September, 1999. His current research interests are in the area of wireless/ mobile networks with emphasis on wireless LAN/MAN/PAN, next-generation mobile networks, mesh networks, cognitive radios, resource management, data link layer protocols, and cross-layer approaches. He authored/coauthored over 120 technical papers and book chapters in the areas of wireless/mobile networks and communications. He has co-authored (with B. G. Lee) a book “Broadband Wireless Access and Local Networks: Mobile WiMAX and WiFi,” Artech House, 2008. He holds 15 US patents, nine European patents, and seven Korea patents, and has tens of patents pending. He has served as a General Co-Chair of COMSWARE 2008, and a Technical Program Committee Co-Chair of ACM Multimedia 2007, IEEE WoWMoM 2007 and IEEE/Create-Net COMSWARE 2007. He was a Co-Chair of Cross-Layer Designs and Protocols Symposium in IWCMC 2006, 2007, and 2008, the workshop co-chair of WILLOPAN 2006, the General Chair of ACM WMASH 2005, and a Technical Program Co-Chair for ACM WMASH 2004. He has also served on program and organization committees of numerous leading wireless and networking conferences including IEEE INFOCOM, IEEE SECON, IEEE MASS, and IEEE WoWMoM. He is also serving on the editorial boards of IEEE Transactions on Mobile Computing, ACM SIGMOBILE Mobile Computing and Communications Review (MC2R), and Journal of Communications and Networks (JCN). He is serving and has served as a guest editor for IEEE Journal on Selected Areas in Communications (JSAC), IEEE Wireless Communications, Pervasive and Mobile Computing (PMC), ACM Wireless Networks (WINET), Wireless Personal Communications (WPC), and Wireless Communications and Mobile Computing (WCMC). He gave a tutorial on IEEE 802.11 in ACM MobiCom 2004 and IEEE ICC 2005. Since year 2000, he has been a voting member of IEEE 802.11 WLAN Working Group. He has received a number of awards including the Young Scientist Award (awarded by the President of Korea) in 2008; IEEK/IEEE Joint Award for Young IT Engineer of the Year 2007 in 2007; the Outstanding Research Award in 2008 and the Best Teaching Award in 2006 both from the College of Engineering, Seoul National University; the Best Paper Award from IEEE WoWMoM 2008; and Recognition of Service Award in 2005 and 2007 from ACM. Dr. Choi was a recipient of the Korea Foundation for Advanced Studies (KFAS) Scholarship and the Korean Government Overseas Scholarship during 1997–1999 and 1994–1997, respectively. He is a senior member of IEEE, and a member of ACM, KICS, IEEK, KIISE. Daji Qiao   is currently an assistant professor in the Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa. He received his Ph.D. degree in Electrical Engineering-Systems from The University of Michigan, Ann Arbor, Michigan, in February 2004. His current research interests include modeling, analysis and protocol/algorithm design for various types of wireless/mobile networks, including IEEE 802.11 Wireless LANs, mesh networks, and sensor networks. He is a member of IEEE and ACM.   相似文献   

15.
We investigate Wireless LAN hot-spots based on the IEEE 802.11b protocol, considering technical and economic issues of the Radio Resource Allocation. Firstly, we discuss how to model the trade-off between perceived QoS and paid price in the users' request, so as to represent the users as choosing the most satisfactory allocation, determined by service requirements and willingness to pay. After the setup of the users' requests, the multiple medium access mechanism is considered and the network performance is evaluated and discussed. Thus, we investigate the provider's task of having a suitable price policy which gives a satisfactory income and efficiently exploit network capacity. This is also dependent on a price setting that is accepted by the users and optimises resource usage. Finally, we study how the multiple access scheme specified in the IEEE 802.11b protocol combines users' requests to a final allocation, and identify possibilities of improvement for the inherent inefficiencies arising from overload. Leonardo Badia was born in Ferrara, Italy, in 1977. He received the MS Degree in Electrical Engineering and the PhD in Information Engineering both from the University of Ferrara, Italy, in 2000 and 2004 respectively. In 2001 he joined the Department of Engineering of the University of Ferrara, where he is a currently a post-doc researcher. During 2002 and 2003 he was on leave at the Royal Institute of Technology of Stockholm, Sweden. His research interests include energy efficient Ad Hoc Networks, transmission protocol modelling, Admission Control and economic modelling of Radio Resource Management for Wireless Networks. Michele Zorzi was born in Venice, Italy, in 1966. He received the Laurea Degree and the Ph.D. in Electrical Engineering from the University of Padova, Italy, in 1990 and 1994, respectively. During the Academic Year 1992/93, he was on leave as a graduate student at the University of California, San Diego (UCSD), where he did research on multiple access in mobile radio networks. In 1993, he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University di Ferrara, Italy. Since November 2003, he has been on the faculty at the Information Engineering Department of the University of Padova. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, and energy constrained communications protocols. Dr. Zorzi is the Editor-In-Chief of the IEEE Wireless Communications Magazine, and currently serves on the Editorial Boards of the IEEE Transactions on Communications, the IEEE Transactions on Wireless Communications, the IEEE Transactions on Mobile Computing, the Wiley Journal of Wireless Communications and Mobile Computing and the ACM/URSI/ Kluwer Journal of Wireless Networks.  相似文献   

16.
Pre-equalization Techniques for Downlink and Uplink TDD MC-CDMA Systems   总被引:1,自引:0,他引:1  
Time division duplex (TDD) multi carrier-code division multiple access (MC-CDMA) systems have recently been proposed as potential candidates for next generation (4G) technology. In order to mitigate multiple access interference, in this paper we investigate pre-equalization schemes for both downlink and uplink transmissions, the former also in a multiple transmit antenna scenario. In particular, new pre-equalizer techniques are introduced and complexity issues addressed. Numerical results are given to highlight the effectiveness of the proposed schemes with respect to other existing pre-equalizer solutions. Paola Bisaglia was born in Padova, Italy, on August 8, 1971. She received the Laurea (cum laude) and Ph.D. degrees in electronic engineering from the University of Padova, Padova, Italy in 1996 and 2000 respectively. In 2000 she joined Hewlett-Packard Research Laboratories, Bristol, England, working on Home Phoneline Networking and wireless LANs. From 2002 she is a research fellow at the Department of Information Engineering of the University of Padova, Italy. Her research interests include wireless local area networks; modulation, coding techniques and detection strategies for next generation (4G) broadband cellular systems, based on the combination of multi-carrier and spread-spectrum modulations. Luca Sanguinetti is a Ph.D. Student of the University of Pisa. He was born in Empoli, Italy, on February 19, 1977, and he received the Doctor Engineer degree (cum laude) in information engineering from the University of Pisa, Italy, in 2002. Since 2002 he was with the Department of Information Engineering of the University of Pisa, where he is working toward the Ph.D. degree in information engineering under the supervision of Prof. Umberto Mengali and Prof. Michele Morelli. In 2004, he was a visiting Ph.D. student at the German Aerospace Center (DLR), Oberpfaffenhofen, Germany. Currently he is involved in a research project dealing with the design and the development of base stations and user terminals for wideband wireless communications systems able to cope with those reconfigurability and interoperability characteristics required by the next generation mobile communication systems. His research interests are in wireless communication theory, with emphasis on synchronization and detection algorithms and channel estimation in multiple-access communication systems. Michele Morelli received the Laurea (cum laude) in electrical engineering and the “Premio di Laurea SIP” from the University of Pisa, Italy, in 1991 and 1992 respectively. From 1992 to 1995 he was with the Department of Information Engineering of the University of Pisa, where he received the Ph.D. degree in electrical engineering. In September 1996 he joined the Centro Studi Metodi e Dispositivi per Radiotrasmissioni (CSMDR) of the Italian National Research Council (CNR) in Pisa where he held the position of Research Assistant. Since 2001 he has been with the Department of Information Engineering of the University of Pisa where he is currently an Associate Professor of Telecommunications. His research interests are in wireless communication theory, with emphasis on synchronization algorithms and channel estimation in multiple-access communication systems. Nevio Benvenuto received the Laurea degree from the University of Padova, Padova, Italy, and the Ph.D. degree from the University of Massachusetts, Amherst, in 1976 and 1983, respectively, both in electrical engineering. From 1983 to 1985 he was with AT&T Bell Laboratories, Holmdel, NJ, working on signal analysis problems. He spent the next three years alternating between the University of Padova, where he worked on communication systems research, and Bell Laboratories, as a Visiting Professor. From 1987 to 1990, he was a member of the faculty at the University of Ancona. He was a member of the faculty at the University of L'Aquila from 1994 to 1995. Currently, he is a Professor in the Electrical Engineering Department, University of Padova. His research interests include voice and data communications, digital radio, and signal processing. Silvano Pupolin received the Laurea degree in Electronic Engineering from the University of Padova, Italy, in 1970. Since then he joined the Department of Information Engineering, University of Padova, where currently is Full Professor of Electrical Communications. He was Chairman of the Faculty of Electronic Engineering from 1990 to 1994, Chairman of the PhD Course in Electronics and Telecommunications Engineering from 1991 to 1997 and Director of the PhD School in Information Engineering from 2004. Also, he was member of the programming and development committee from 1997 to 2002 and member of Scientific Committee from 1996 to 2001 of the University of Padova; member of the budget Committee of the Faculty of Engineering from 2003. He has been actively engaged in research on: Digital communication systems over copper wires and fiber optics; Spread spectrum communication systems; Design of large reliable communications networks; Effects of phase noise and HPA nonlinearities in OFDM systems; 3G mobile radio communications systems (UTRA-FDD and TDD) and beyond 3G (OFDM modulation and MC CDMA); Packet radio, Ad-hoc networks with the use of Bluetooth and WLAN. He was Chairman of the 9-th and 10-th Tyrrhenian International Workshop on Digital Communications devoted to “Broadband Wireless Communications” and to “Multimedia Communications”, respectively, and he was General Chair of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC'04). He spent the summer 1985 at AT&T Bell Laboratories on leave from Padova, doing research on digital radio systems. He was Principal investigator for research projects entitled “Variable bit rate mobile radio communication systems for multimedia applications”, “OFDM Systems with Applications to WLAN Networks”, and “MC-CDMA: an air interface for the 4th generation of wireless systems”.  相似文献   

17.
The quality-of-service (QoS) communication that supports mobile applications to guarantee bandwidth utilization is an important issue for Bluetooth wireless personal area networks (WPANs). In this paper, we address the problem of on-demand QoS routing with interpiconet scheduling in Bluetooth WPANs. A credit-based QoS (CQ) routing protocol is developed which considers different Bluetooth packet types, because different types of Bluetooth packets have different bandwidth utilization levels. This work improves the bandwidth utilization of Bluetooth scatternets by providing a new interpiconet scheduling scheme. This paper mainly proposes a centralized algorithm to improve the bandwidth utilization for the on-demand QoS routing protocol. The centralized algorithm incurs the scalability problem. To alleviate the scalability problem, a distributed algorithm is also investigated in this work. The performance analysis illustrates that our credit-based QoS routing protocol achieves enhanced performance compared to existing QoS routing protocols.This work was supported by the National Science Council of the Republic of China under grant nos. NSC-92-2213-E-194-022 and NSC-93-2213-E-194-028. Yuh-Shyan Chen received the B.S. degree in computer science from Tamkang University, Taiwan, Republic of China, in June 1988 and the M.S. and Ph.D. degrees in Computer Science and Information Engineering from the National Central University, Taiwan, Republic of China, in June 1991 and January 1996, respectively. He joined the faculty of Department of Computer Science and Information Engineering at Chung-Hua University, Taiwan, Republic of China, as an associate professor in February 1996. He joined the Department of Statistic, National Taipei University in August 2000, and joined the Department of Computer Science and Information Engineering, National Chung Cheng University in August 2002. Dr. Chen served as Co-Editors-in-Chief of International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Editorial Board Member of Telecommunication System Journal, International Journal of Internet Protocol Technology (IJIPT) and The Journal of Information, Technology and Society (JITAS). He also served as Guest Editor of Telecommunication Systems, special issue on “Wireless Sensor Networks” (2004), and Guest Editor of Journal of Internet Technology, special issue on “Wireless Internet Applications and Systems” (2002) and special issue on “Wireless Ad Hoc Network and Sensor Networks” (2004). He was a Vice Co-Chair, Wireless IP Symposium of WirelressCOM2005, USA (2005) and a Workshop Co-Chair of the 2001 Mobile Computing Workshop, Taiwan. Dr. Chen also served as IASTED Technical Committee on Telecommunications for 2002–2005, WSEAS International Scientific Committee Member (from 2004), Program Committee Member of IEEE ICPP'2003, IEEE ICDCS'2004, IEEE ICPADS'2001, ICCCN'2001–2005, MSN'2005, IASTED CCN'2002–2005, IASTED CSA'2004–2005, IASTED NCS'2005, and MSEAT'2003–2005. His paper wins the 2001 IEEE 15th ICOIN-15 Best Paper Award. Dr. Chen was a recipient of the 2005 Young Scholar Research Award given by National Chung Cheng University to four young faculty members, 2005. His recent research topics include mobile ad-hoc network, wireless sensor network, mobile learning system, and 4G system. Dr. Chen is a member of the IEEE Computer Society, IEICE Society, and Phi Tau Phi Society. Keng-Shau Liu received the M.S. degree in Computer Science and Information Engineering from National Chung Cheng University, Taiwan, Republic of China, in July 2004. His research includes wireless LAN, Bluetooth, and mobile learning.  相似文献   

18.
Wireless Local Area Networks (WLANs) is one of the most promising access technologies for the upcoming fourth-generation wireless communication systems. In the last few years, several research efforts have been devoted to investigate possible multiple access schemes capable of supporting real-time traffic as well as best-effort data transmissions. In particular, the use of suitable transmission schemes allows not only to achieve higher data-rates, but also to perform resource allocation in order to guarantee specific service requirements. In this paper we propose a medium access control (MAC) scheme for a WLAN supporting real-time (voice) and best-effort (data) services, based on Orthogonal Frequency Division Multiplexing (OFDM) technique. A suitable analytical approach is proposed in order to derive the performance of the proposed MAC scheme. In particular, it is shown in the paper that a high overall network capacity in terms of simultaneously active users is achieved by effectively exploiting the multiuser capabilities offered by OFDM, together with a proper service differentiation. Work partially supported by MIUR within the WOMEN project. Romano Fantacci, (M’87,SM’91, F’05) born in Pistoia, Italy, graduated from the Engineering School of the Universit di Firenze, Florence, Italy, with a degree in electronics in 1982. He received his Ph.D. degree in telecommunications in 1987. After joining the Dipartimento di Elettronica e Telecomunicazioni as an assistant professor, he was appointed associate professor in 1991 and full professor in 1999. His current research interests are digital communications, computer communications, queuing theory, satellite communication systems, wireless broadband communication networks, ad-hoc and sensor networks. He has been involved in several European Space Agency (ESA) and INTELSAT advanced research projects. He is the author of numerous articles published in prestigious communication science journals. He guest edited special issues in IEEE Journals and magazines and served as symposium chair of several IEEE conferences, including VTC, ICC and Globecom. Professor Fantacci received the IEE IERE Benefactor premium in 1990 and IEEE COMSOC Award Distinguished Contributions to Satellite Communications in 2002. He is currently serving as Editor for Telecommunication Systems, IEEE Trans. Commun. and IEEE Transactions on Wireless Communications. Gianluca Vannuccini born in Florence, Italy, graduated in Electronics Engineering in 1999. He received his Ph.D. degree in Telematics and Information Society in 2003 from the Electronics and Telecommunications Department of the University of Florence. During 2002 he was for six months in IBM Zurich Research Laboratory, Zurich, Switzerland, working in a research project on IEEE 802.11e performance evaluation. During the Ph.D. course, he has published on several IEEE conferences and served as reviewer for several journals on the telecommunications and telematics research area. He has been IEEE student member since 1999 and IEEE member since 2004. He is now with the IT department of the Florence local government organization, where he works as a program manager on data quality and integration and e-government IT projects. Gabriele Vestri was born in Florence (Italy) in November 1976. He received his degree in telecommunications from the Universit di Firenze, Florence, Italy, in March 2002. He has been research scientist for CSO Ophthalmic (Florence) since September 2002. His current research interests include ophthalmic instruments, contact lens design, image processing, the effects of optical aberrations and of retinal architecture of the eye on visual performance.  相似文献   

19.
The IEEE 802.11 standards support the peer-to-peer mode Independent Basic Service Set (IBSS), which is an ad hoc network with all its stations within each other’s transmission range. In an IBSS, it is important that all stations are synchronized to a common clock. Synchronization is essential for the MAC layer power management. Also, if frequency hopping spread spectrum is used in the physical layer, synchronization is needed to ensure that all stations “hop” at the same time. This paper evaluates the synchronization mechanism as specified in the IEEE 802.11 standards. Through rigorous analysis, it is shown that when the number of stations in an IBSS is not very small, there is a non-negligible probability that stations may get out of synchronization. The more stations, the higher probability of asynchronism. In this sense, the current IEEE 802.11 synchronization algorithm does not scale; it cannot support a large-scale IBSS. To alleviate the asynchronism problem, this paper proposes a simple remedy to the 802.11 algorithm. The resulting algorithm enjoys many nice properties—it is compatible, scalable, effective, mobility-friendly and simple. We are able to exceed the industry expectation of time accuracy (maximum clock offset under 12 μs) without any change of beacon format. Dong Zhou is a Member of Technical Staff with Lucent Technologies. He has 11-year experience in networking and telecommunication industry. He got his Ph.D. degree in Computer Science from Ohio State University. He got his B.S. and M.S. degrees in Computer Science from Beijing University. He is an IEEE senior member and has served as a technical committee member in several IEEE conferences. His research interests include 3G/4G wireless network, wireless Ad Hoc networks, fixed and mobile network convergence. Lifei Huang received the B.E. degree from Tsinghua University, Beijing, China, in 2000, and the M.S. degree from Ohio State University, Columbus, Ohio, in 2002. Currently he is a software engineer at Microsoft. His research interests are in the areas of computer networking and wireless networks. Ten H. Lai is a Professor of Computer Science and Engineering at the Ohio State University. A pioneer of Zen Networking, he is interested in the art of applying Zen to teaching and research of protocol design. He served as program chair of ICPP’98, general chair of ICPP’00, program co-chair of ICDCS’04, and, recently, general chair of ICDCS’05. He is/was an editor of IEEE Transactions on Parallel and Distributed Systems, ACM/Springer Wireless Networks, Academia Sinica’s Journal of Information Science and Engineering, International Journal of Sensor Networks, and International Journal of Ad Hoc and Ubiquitous Computing.  相似文献   

20.
The IEEE 802.11 MAC protocol provides a reliable link layer using Stop & Wait ARQ. The cost for high reliability is the overhead due to acknowledgement packets in the direction opposite to the actual data flow. In this paper, the design of a new protocol as an enhancement of IEEE 802.11 is proposed, with the aim of reducing supplementary traffic overhead and increasing the bandwidth available for actual data transmission. The performance of the proposed protocol is evaluated through comparison with IEEE 802.11 as well as with a SSCOP-based protocol. Results underline significant advantages of the proposed protocol against existing ones, thus confirming the value and potentiality of the approach.Dzmitry Kliazovich received his Masters degree in telecommunication science from Belarusian State University of Informatics and Radioelectronics in 2002. He is currently working towards the Ph.D. degree in University of Trento, Italy. His main research interest lies in wireless networking field with a focus on performance optimization and cross-layer design.Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, with a thesis on video coding, awarded with the TELECOM Italy prize, and the Ph.D. degree in Electronic Engineering and Computer Science from the same university in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor at the Dept. of Information and Communication Technologies (DIT) of the University of Trento (Italy) within the B.Sc. and M.Sc. Degrees in Telecommunications Engineering.The research interests of Dr. Granelli are mainly focused on networking, with particular attention to network modeling and performance evaluation, wireless networks, access control, and next-generation telecommunication networks.He is author of more than 30 refereed papers, published in several international journals and conferences.Dr. Granelli is member of the IEEE Committee on “Communication Systems Integration and Modeling” (CSIM) and of the Technical Programme Committee of the “QoS and Performance Evaluation Symposium” of the International Conference on Communications (ICC 2003 and ICC 2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号