首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用超声改性法制备改性淀粉,通过预聚-扩链-中和-分散法合成聚氨酯水溶液,并用相分离法制备出超声改性淀粉/聚氨酯复合微球。考察了R值[n(—NCO)/n(—OH)]、改性淀粉的含量、聚乙二醇的分子量及固含量对复合微球形态的影响。研究了载药复合微球在体外的药物释放规律。并通过扫描电子显微镜和傅里叶变换红外光谱对微球的表面及剖面结构和化学组成进行了表征。结果表明:复合微球合成的最佳条件:R值为3,改性淀粉含量为6%(wt,质量分数,下同),聚乙二醇分子量为200,固含量为38%;复合微球表面光滑并且内部有很多致密的孔道,且聚氨酯和改性淀粉之间通过氢键连接,稳定性良好;降解性及药物释放研究显示,该类微球适于充当药物载体。  相似文献   

2.
采用壳聚糖作为载体,通过分子结构设计,以叶酸靶向受体改性壳聚糖,然后选择5-氟尿嘧啶为模型药物,采用复凝聚法制备新型壳聚糖靶向缓释功能高分子载药微球。通过红外光谱和1 H-NMR核磁共振分析确定了叶酸改性壳聚糖化学结构,并通过扫描电镜、激光粒度分析仪、激光共聚焦显微镜及紫外光谱等现代仪器和分析方法对载药微球的形貌结构、粒径、包埋率、载药量和体外药物释放特性等进行研究。结果表明,模型药物被成功包埋到叶酸改性后的壳聚糖微球中,包埋率E和载药量L最高可达86.5%和32.7%,载药微球的平均粒径为5.251μm,多分散系数(PDI)为0.056,球形度、分散性良好;激光共聚焦显微镜结果显示微球为核壳结构;体外释放实验表明壳聚糖靶向缓释功能高分子载药微球具有持久的缓释作用,24h后载药微球在模拟胃液(pH值=1.2)中释放率为70%,在模拟肠液(pH值=7.4)中释放率为40%,释药速度与释放介质的pH值密切相关。  相似文献   

3.
以聚(乳酸-羟基乙酸)为基质材料,采用一种新颖的流动凝固浴剪切法制备包载盐酸万古霉素的载药微球,并研究微球的形貌结构、粒径、包封率、载药率、体外释放性能及其影响因素。结果表明,所制备的载药微球平均粒径在15~29μm范围,微球呈现内部实心表面多孔的复合结构;微球的包封率及载药可分别在15%~75%和1.5%~9.3%范围内调控。微球制备过程中的工艺条件对微球结构形貌、包封率、载药率及释放性能有重要影响,通过调整微球的粒径,可有效减缓释药过程中的突释现象。  相似文献   

4.
目的:优化BSA-PLGA微球制备工艺,并对其包封率、形态、体外释放药物及微球包裹前后BSA的稳定性进行评价。方法:以PLGA为载体,采用复乳溶剂挥发法制备BSA-PLGA微球。Micro BCA法测定微球的包封率和载药量,扫描电子显微镜观察微球的形态,激光粒度仪测定粒度及分布,聚丙烯酰胺凝胶电泳(SDS-PAGE)研究微球包裹前后BSA分子结构的完整性,同时考察体外释药性能。结果:根据优化工艺制备的微球外观圆整,平均粒径(2275.8±256.9)nm,包封率(82.59±2.92)%,载药量(13.76±0.49)×10-2%,包裹前后BSA结构稳定,体外释放28天以上,释放曲线符合Higuchi方程。结论:本研究获得了较优化的BSA-PLGA微球制备工艺,所制备的微球具有较高的包封率和明显的缓释效果。  相似文献   

5.
采用乳化-化学交联法制备了盐酸环丙沙星-ε-聚赖氨酸(CH-PL)微球。利用扫描电镜、红外光谱和ZetasizeNano ZS对载药微球进行表征,并考察了CH-PL微球在0.1mol/L HCl(pH=1.2)溶液中的释药行为以及不同交联剂用量对载药微球释药速率的影响。结果表明:成功制备了球形圆整、分散性好、平均粒径约为15μm的CH-PL微球,其最大载药量和包封率分别为5.1%和42.8%;CH-PL微球具有良好的缓释效果,释药过程符合Higuichi机制,且微球的释药速率随交联剂用量的增加而变慢。  相似文献   

6.
采用乳化交联法制备胶原蛋白/壳聚糖/纳米SiO_2复合微球。以司班80和液体石蜡为油相,混合溶液为水相,引入硬脂酸镁(MS)作助乳化剂,以SEM、FT-IR、UV、激光粒度仪为表征手段研究了油水体积比、搅拌速率、交联剂与混合溶液体积比和纳米SiO_2对复合微球的成球性及其载药释药性能的影响。结果表明,MS的助乳化效果较好,在纳米SiO_2和混合溶液质量比为2%(wt,质量分数)时,盐酸小檗碱载药微球的载药率为15.66%,包封率为66.52%,维生素D载药微球的载药率为3.08%,包封率为48.54%。结论:制备了粒度分布集中的药物缓释微球,纳米SiO_2使微球具有更好的缓释性能,且在pH较低时不易分解,减少粘附。  相似文献   

7.
通过海藻酸钠/聚乙二醇(SA/PEG)改性微球实验,研究了改性微球的最佳浓度配比、溶胀性能、凝胶化速率、干燥速率、含水率、载药量及体外释药性能。结果表明:海藻酸钠(SA)浓度为3%,氯化钙浓度为4%时,微球成球效果最佳。SA浓度、氯化钙溶液浓度、PEG浓度、投药量的不同影响微球的载药量;在模型药物盐酸四环素的用量固定在0.2000g的条件下,采用实验(SA 3.0%;PEG 0.0%,0.5%,1.0%,1.5%,2.0%;氯化钙4%),通过测得的含水率、载药率和释放率,综合分析选择最合适浓度:SA 3%,氯化钙4%。随着PEG浓度的增加,微球的含水率降低;溶胀速率加快;并且微球能在pH=7.4的PBS磷酸缓冲液中溶胀。  相似文献   

8.
以PEG、PLA、IPDI和DMPA为原料,采用预聚-扩链-中和-分散法制备聚乳酸改性聚氨酯水溶液,再用凝聚相分离法制备聚乳酸改性聚氨酯微球。优化了合成条件,进行了红外与扫描电镜表征,测定了微球的溶胀率,发现其溶胀率随PLA分子量增大而减小,测定了微球的降解率,结果表明在PU的软段中引入PLA,能显著改善PU的降解性能。  相似文献   

9.
磁性明胶载药微球的制备及体外释药研究   总被引:3,自引:0,他引:3  
王彦卿  张朝平 《功能材料》2004,35(Z1):2332-2335
以诺氟沙星为水溶性模型药物,采用反相悬液冷冻凝聚法制得包裹Fe3O4微粒和药物的磁性明胶微球,考察了磁性载药微球的制备条件对微球的成球率、药物包裹率、体外释药及微球降解情况的影响.结果表明,明胶的浓度、戊二醛的用量、固化时间等均对微球的结构和性能产生影响,经优化条件得到了成球率、药物包裹率、体外释放都较好的载药微球.  相似文献   

10.
利用反相乳液聚合法制备出具有良好生物相容性的壳聚糖/蒙脱土复合微球,其中改性蒙脱土作为插层改性剂引入。用X射线衍射和红外光谱分析了改性蒙脱土的结构,以阿司匹林为模型药物,以药物包埋法制备出了壳聚糖/蒙脱土载药微球,并对其缓释性能进行探讨。结果表明,改性蒙脱土的层间距变大,随着蒙脱土含量的增大,复合微球的溶胀率降低,释药率逐渐减小,pH值为1.2下的壳聚糖/蒙脱土载药微球的释药模式为Fickian扩散类型,pH值为7.4下的释药模式为non-Fickian扩散,壳聚糖/蒙脱土复合微球作为药物载体很有潜力。  相似文献   

11.
通过乳液聚合法制备了负载阿莫西林的纳米羟基磷灰石/聚氨酯(n-HA/PU)载药微球,通过正交设计实验对其制备工艺进行了优化,采用红外光谱、热重分析、扫描电镜等分析了微球的结构和性能,对其体外药物缓释过程进行探讨。研究结果表明,复合微球粒径大小与固含量、聚乙烯吡咯烷酮(PVP)含量、搅拌速度等有关,所制备的微球平均粒径为0.8~1.2mm;载药微球的优化制备工艺条件为:原料配比-NCO∶-OH=2∶1,预聚时间180min,预聚温度80℃,nHA含量3%,固含量7%,搅拌速度600r/min,PVP用量3%,所制备微球的载药量为6.58%,包封率为86.86%。体外缓释结果表明,载药微球的释药行为符合Higuchi动力学,半衰期(t1/2)为22.29h,具有良好的药物缓释作用。  相似文献   

12.
采用预聚-扩链-中和-分散法合成聚氨酯(PU)水溶液,将PU与淀粉(ST)溶液按照不同质量比进行复合,采用凝聚相分离法制备PU/ST复合微球;用傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)对微球进行表征,并以盐酸四环素为模型药物制备载药复合微球,初步研究了载药PU/ST复合微球的药物释放性能.结果表明,微球...  相似文献   

13.
采用预交联法制备海藻酸钠(SA)/凹土(ATP)复合微球(PCM)以克服常规制备方法导致微球交联不均匀的缺陷,从而改善微球的缓释性能。将ATP先与Ca~(2+)进行部分离子交换制备Ca~(2+)-ATP,然后在与SA复合过程中同时进行预交联形成交联密度有所提高的微球内核,再采用滴注法制备该复合微球。利用红外光谱、扫描电镜和电子照片对微球结构和形貌进行表征,考察了Ca~(2+)浓度对PCM力学强度、溶胀率、载药和缓释性能的影响。结果表明,PCM在1h的累计释放率由预交联前的68%降为50%,显著改善了微球的"突释"。释放动力学研究表明,微球的释药可用Ritger-Peppas方程很好地拟合,释药速率受骨架溶蚀和药物扩散双重控制。  相似文献   

14.
以2,4-二氯苯氧乙酸(2,4-D)为模型药物,CaCl2为交联剂,采用挤压法制备了2,4-D-羽毛蛋白/海藻酸钠复合微球;借助傅里叶红外光谱仪、扫描电镜、差示扫描量热仪、X射线衍射仪表征了复合微球的形貌和结构特征;探讨了羽毛蛋白和海藻酸钠的主要交互作用力;同时考察了不同比例羽毛蛋白对复合微球载药量、包封率以及缓释性能的影响。结果表明,所制得的复合微球的粒径约为1 mm;2,4-D以非晶态较为均匀地分散在复合微球中;羽毛蛋白与海藻酸钠主要通过静电作用力、氢键结合;羽毛蛋白的加入可以改变海藻酸钠载药微球的微相结构,有利于调节复合微球的载药量、包封率以及缓释性能;复合载药微球释药规律符合Korsmeyer-Peppas动力学方程。  相似文献   

15.
以生物可降解材料聚乳酸-羟基乙酸(PLGA)为载体制备了载紫杉醇纳米粒,重点考察了纳米粒的体外释放特性.采用乳化-溶剂挥发法制备了载紫杉醇PLGA纳米粒,其平均粒径为200nm,载药量为21%,包封率为89.44%;体外释药符合Higuchi方程:Q=3.8796t1/2+30.4649(r=0.9397),同时载紫杉醇纳米粒具有一定的缓释作用.  相似文献   

16.
基于超临界CO2技术制备的甲氨蝶呤纳米粒为小分子模型药物,采用高压静电抗溶剂法制备甲氨蝶呤-聚乳酸复合微球。用扫描电镜(SEM)、傅立叶红外光谱仪(FT-IR)对该载药复合微球进行表征,并研究其载药量、包封率和药物释放曲线。实验结果表明,甲氨蝶呤-聚乳酸复合微球表面光滑,粒径分布范围在10~50μm之间;FT-IR表明,在高压静电抗溶剂过程中聚乳酸化学结构无变化,有利于其作为药物载体;随着理论载药量增加(2.5%、5%和10%),包封率减少(18.0%、7.1%和2.3%);甲氨蝶呤从聚乳酸微球中释放具有长效缓释的性能,无突释效应。  相似文献   

17.
张婳  娄少峰  金成成  聂华丽  权静  朱利民 《功能材料》2012,43(20):2767-2771
应用静电纺丝技术,以Captopril(CPL)为模型药物,以聚(乳酸-羟基乙酸)(PLGA)为载体高分子材料制备CPL/PLGA载药纳米纤维。探讨了静电纺丝工艺参数,得出最佳较优纺丝条件为原液浓度20%(质量分数),载药量:m(CPL)∶m(PLGA)=2∶10,电压12.5kV,流速1mL/h,溶剂为V(二氯甲烷)∶V(丙酮)=2∶1。应用扫描电子显微镜(SEM)、傅立叶红外光谱仪(FT-IR)、差示扫描量热仪(DSC)和采用多晶衍射仪(XRD)对所制备的载药纤维进行了表征。体外(In vitro)释药性研究实验结果表明,PLGA载药纳米纤维具有明显的初期突释,随着缓冲溶液pH值增加,初期突释减弱,药物释放度也会随之减弱。  相似文献   

18.
TiO_2/SiO_2复合中空微球的选择性改性与药物缓释性能研究   总被引:2,自引:0,他引:2  
以聚合物微球为模板,通过溶胶-凝胶法制备了TiO2/SiO2复合中空微球,并分别采用硬脂酸和无机磷酸对内层二氧化钛进行了疏水和亲水改性.扫描电镜(SEM)和氮气吸附-脱附结果表明中空微球具有完整的球形空腔和多孔的壳层孔道结构.傅立叶红外光谱(FTIR)证实了内部疏水及亲水改性层的存在.以布洛芬药物为对象,采用热重分析(TGA)和高效液相色谱(HPLC)考察了不同改性对复合中空微球的载药量及缓释性能的影响.研究结果表明,由于存在疏水作用,硬脂酸改性的中空微球载药量(189.8mg/g)高于未改性中空微球(177.5mg/g),且药物释放速率明显减慢,53h内药物释放率仅为55%;与此相反,无机磷酸亲水改性的中空微球载药量减小(为153.0mg/g),且释放速率提高,10h内释放了将近80%的药物.因此,采用不同的改性基团可以对复合中空微球的药物释放速率进行有效地调控.  相似文献   

19.
以L-聚乳酸-聚乙二醇三嵌段共聚物(PLLA-PEG-PLLA)为载体材料,通过超临界流体强制溶液分散技术制备吗啡/聚乳酸-聚乙二醇共聚物(MF/PLLA-PEG-PLLA)的复合微球,考察了PEG分子量的变化对微球性能的影响。通过表面形貌,粒径及粒径分布,载药量,包封率及释放性能来表征复合微球的各项性能;利用气相色谱法测定二氯甲烷和甲醇的残留量;通过溶血实验来评价复合微球的血液相容性。实验表明,所制备的复合微球呈球形或类球形形貌,平均粒径在1.99~6.20μm之间,载药量达到17.92%,包封率最高可至69.57%,复合微球的药物释放呈先突释后缓释的释药模式;二氯甲烷和甲醇的残留量分别为0.0076%和0.0016%;微球溶血率<1%,远小于国家标准5%,证明复合微球具有较好的血液相容性。  相似文献   

20.
为了制备功能化的栓塞微球,提高微球的载药率,以海藻酸钠(SA)为起始原料,经牛磺酸(TA)改性,采用反相乳液聚合方法将改性后的产物制得栓塞微球。用扫描电子显微镜(SEM)、超景深显微镜、紫外/可见分光光度计等对微球进行了鉴定和表征,并测定了改性前后SA水溶液的黏度。结果表明:改性后的SA溶液在水中的黏度有所降低;微球直径100~500μm;与未改性聚合物相比,改性后的SA微球负载药物阿霉素最高达到30%;载药微球对药物阿霉素的累计释放量增加,缓释现象明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号