首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
循环流化床锅炉具有煤种适应性广,负荷调节能力强,污染物超低排放等优点,被广泛应用于煤的清洁燃烧。为探究循环流化床污染物生成和排放规律,以0.3 MWthCFB燃煤中试装置系统为实际模型,利用Aspen Plus对煤燃烧和污染物控制装置全流程建模。采用Gibbs最小自由能热力学分析方法对煤燃烧产物进行了分析计算,并利用软件自带的灵敏度分析工具,对不同的操作参数进行了灵敏度分析,预测了锅炉运行参数对烟气组分、选择性催化还原脱硝效率和石灰石-石膏湿法烟气脱硫效率的影响规律,获得了过量空气系数、烟气温度、氨氮比和钙硫比对NOx和SOx脱除效率以及SO3生成的影响曲线。结果表明,在循环流化床煤燃烧条件下,温度变化对NOx和SOx的生成影响显著,温度升高会促进NH3、HCN等前驱物的转化,促进燃料氮生成NOx;高温条件下,SO2生成反应的化学平衡向正方向移动,但反应速率会随温度和浓度的升高而降低,SO3则与之相反。在选择性催化还原脱硝过程中,较低温度时,脱硝率随温度升高而增加,最佳活性温度在360℃左右; SCR反应温度低于380℃时,SO3含量呈显著上升趋势,380℃出现一极大值点,而后趋于平缓并略有下降。NSR1时,脱硝率随氨氮比增加而增加,最佳氨氮比在1.05。湿法烟气脱硫过程中,增加钙硫比能明显提高脱硫效率,最佳钙硫比在1.05左右,并降低SO3排放;脱硫系统入口烟气温度升高会导致脱硫效率降低,但促进了SO3的生成。  相似文献   

2.
李磊  金平  郭东明  李欣  韩天竹  刘忠生 《当代化工》2021,50(5):1231-1236,1240
FCC再生烟气中的SO3来源于催化剂再生过程和SCR脱硝反应过程.烟气中的SO3会造成设备腐蚀、装置投资及能耗增加;SO3与逃逸氨反应生成NH4HSO4,造成催化剂孔道堵塞及省煤器结垢;SO3排入大气中,会形成可凝结颗粒物及酸雨,污染环境,危害人体健康;经湿法脱硫后SO3以H2SO4气溶胶的形式排入大气中会形成蓝色/黄色烟羽.通过加氢预处理降低催化原料油中硫的质量分数、优化FCC装置操作条件及SCR脱硝催化剂,可降低FCC再生烟气中SO3的生成量.采用湿式静电除尘(除雾)器可有效脱除FCC再生烟气中的硫酸雾,但存在腐蚀问题,不能稳定长周期运行,同时其建设费用和运行成本较高.中国石化大连石油化工研究院开发的FCC再生烟气相变凝聚除尘技术,可有效脱除FCC再生烟气中的超细粉尘、H2SO4气溶胶等微细颗粒物.  相似文献   

3.
为了最大程度的提高燃煤电厂烟气脱硝效率,以SCR烟气脱硝效率为评价指标,采用烟气脱硝反应实验装置研究了不同催化剂类型、反应温度、氨氮比、氧气浓度、含水量以及空速等因素对SCR烟气脱硝效率的影响。实验结果表明,在其他实验条件均相同的情况下,铜基分子筛催化剂Cu-ZSM对目标模拟烟气的脱硝效果明显优于其他类型的催化剂;当反应温度为320℃、氧气浓度为5%时,SCR烟气脱硝效率可以达到最大;氨氮比越大,SCR烟气脱硝效率就越大,推荐最佳的氨氮比为1.0;含水量和空速越大,SCR烟气脱硝效率就越小,在实际应用过程中,应选择合适的空速,以平衡脱硝效率和经济成本,同时应尽可能的降低含水量,以最大限度的提高燃煤电厂SCR烟气脱硝效率。  相似文献   

4.
根据某炼化企业50万t/a催化裂化装置原污染物排放浓度要求,经过对脱硫除尘、脱硝技术和工艺水处理技术的分析和对比,选择了宁波院专利的脱硫除尘及工艺水处理技术和SCR脱硝技术,此技术组合投资费用低、脱除效率高、技术成熟度高,在项目建设完成后的运行过程中,烟气排放的各污染物指标远低于设计要求排放指标。  相似文献   

5.
臧剑波 《水泥工程》2021,34(6):9-12
为了提高SCR脱硝效率,以水泥窑尾系统为研究对象,提出烟气SCR脱硝工艺优化方法。依据SCR脱硝工艺脱硝方式,选择的V2O5-TiO2成分催化剂,从脱硝控制、反应机理、反应物扩散三个方面,确定水泥窑尾系统烟气SCR脱硝工艺脱硝的反应原理;计算SCR脱硝工艺脱硝的效率,结合SCR脱硝工艺反应原理,提取SCR脱硝工艺中影响SCR脱硝工艺脱硝效率的烟气温度和流速、氨氮供应量、催化剂性能等因素;采用最小二乘支持向量机,设定优化函数,优化SCR脱硝工艺的烟气温度和流速、氨氮供应量、催化剂性能。设定SCR脱硝工艺试验参数值,应用试验结果:平均供氨流量在设定值范围±0.3 m3/h上下波动,SCR反应器入口NOx浓度,在设定值的上0.4 mg/m3、下0.3 mg/m3范围内波动,SCR出口NOx浓度在设定值上下R0.5 mg/m3波动,对于脱硝过程控制能力高,经脱硝效率计算公式计算,优化后的SCR脱硝工艺脱硝效率提高了3.75%。  相似文献   

6.
有色金属冶炼烟气中SO2浓度高、气量波动大。目前还没有特别有效的处理技术脱除有色金属冶炼烟气中高浓度的SO2。本文采用粘胶基活性炭纤维(ACF)为脱硫剂,对脱除模拟有色冶炼烟气中SO2(0.3%-0.8%)的性能进行了研究,考察了水蒸气含量、床层温度、SO2浓度以及体积空速对ACF脱硫性能的影响。研究结果表明:随着水蒸气含量的增加,ACF脱硫效率逐渐提高,随着反应温度的增加,脱硫效率先增加后减小。当烟气中SO2浓度为0.8%时,在水蒸气含量为33.6%、反应温度为100℃及空速为500h-1时,脱硫效果最佳,平台阶段脱硫效率达41%。降低入口SO2浓度和体积空速可进一步提高ACF脱硫的穿透时间、穿透硫容和平台阶段脱硫效率。  相似文献   

7.
采用臭氧氧化结合湿法喷淋硫代硫酸钠溶液的方法开展模拟烟气同时脱硫脱硝实验研究。结果表明,采用臭氧氧化结合Na2S2O3-Na OH溶液湿法喷淋可以实现NOx和SO_2协同脱除:在O_3/NO摩尔比为1.1~1.2时,溶液中Na2S2O3浓度的增加会提高系统的NO_x脱除效率,烟气中SO2的存在会促进NOx的脱除,当SO2浓度为1030mg·m~(-3)、2.0%Na_2S_2O_3溶液作为喷淋液时可实现较高的SO_2脱除效率,同时NO_x脱除效率可达70%以上;喷淋液p H在2.5~9范围内变化时提高浆液p H有利于NOx的脱除,当p H=9时脱硝效率可达75%。180 min连续同时脱硫脱硝实验结果表明,硫代硫酸钠可有效促进NOx的脱除,并实现SO2较高的脱除效率,同时可实现系统同时脱硫脱硝连续稳定运行,喷淋吸收后烟气中NO_x的主要转化产物为NO~-_2,该方法作为一种有效的同时脱硫脱硝技术,具有一定的工业应用推广前景。  相似文献   

8.
镁钙砂回转窑窑尾烟气中含有氮氧化物、二氧化硫和粉尘等污染物。针对烟气对环境造成污染,配置了高效SCR催化脱硝和SDS干法脱硫除尘系统,本文阐述了SCR脱硝和SDS脱硫技术原理、流程和影响因素分析,并分析了优化设计应用中烟气中氮氧化物、二氧化硫和粉尘的去除效果。结果表明,采用SCR脱硝、SDS干法脱硫和布袋除尘处理后,烟气能够达到排放要求,即NO_x浓度≤150mg/Nm~3,SO_2浓度≤35mg/Nm~3,粉尘排放浓度≤10mg/Nm~3。系统运行后脱硝无副产物产生,脱硫所产生的脱硫副产物主要成分为Na_2SO_4,可综合回收利用作为水泥添加剂辅料。该技术已成功应用到其他回转窑、焦炉等烟气处理项目中,并取得了较好的应用效果。  相似文献   

9.
设计了一套500 m3/h烟气联合脱硫脱硝小试装置,将选择性催化还原(SCR)脱硝装置布置在脱硫工艺后,通过试验对循环流化床半干法脱硫与SCR脱硝工艺进行了研究。研究表明,脱硫效率随着喷水量、床内物料量的增大而增大,脱硝效率随着氨氮比的增大而增大;脱硫装置烟气出口温度控制在79℃时,循环流化床半干法脱硫效率在90%左右,可满足烧结烟气SO2最新排放标准的要求;在此条件下,将烧结烟气再热到300℃脱硝,脱硝效率可达50%,可满足烧结烟气NOx最新排放标准的要求。  相似文献   

10.
刘定平  沈康 《现代化工》2022,(2):225-228+235
针对水泥分解炉脱硝系统氨逃逸问题,提出了利用湿法脱硫系统实现水泥工业烟气氨排放达标的方法。通过在水泥窑尾脱硫系统进行试验,研究了湿法脱硫系统对气态NH3的脱除特性。结果表明,湿法脱硫系统浆液吸收作用能有效脱除烟气中的气态氨。液气比、脱硫浆液pH及浆液中氨氮浓度对尾气中氨逃逸影响较大。增大液气比有利于提高氨脱除效率,在液气比由4.3 L/m3提高到7.0 L/m3时,氨脱除效率由86.0%提高到92.5%;当浆液pH由5.8升高至6.4时,氨脱除效率由94%降低至67%;氨氮浓度由4.03×103 mg/L升高至4.06×103 mg/L时,氨脱除效率由91.9%降低至86.0%。  相似文献   

11.
介绍了祥光铜业从建设初期至今废水处理与烟气超低排放技术的发展过程。通过对全厂水资源的统一调配,对生产废水循环利用和梯度利用,最终实现了生产废水的资源化和减量化。在烟气治理方面,遵循分而治之的思路,根据各工序产出的烟气性质不同,对烟气处理系统不断优化,采用布袋除尘、高温陶瓷膜除尘、湿法洗涤除尘、高浓度SO2制酸、钠碱法脱硫、离子液脱硫、双氧水脱硫、低温氧化脱硝等除尘、脱硫、脱硝烟气处理技术进行合理组合,实现烟气超低排放的同时,提高了烟尘和硫资源的利用率。烟气经处理后,尾气中污染物的浓度稳定达到了含尘(ρ)在10 mg/m3以下,ρ(SO2)在100 mg/m3以下,ρ(NOx)在100 mg/m3以下。在无组织排放控制方面,祥光铜业经过长时间的排查治理和技术改造,无组织排放达到可控状态。  相似文献   

12.
李欣怡  潘丹萍  胡斌  程滕  杨林军 《化工进展》2018,37(12):4887-4896
SO3排放导致的烟羽浊度增大、蓝烟/黄烟现象及其排入大气环境后转化为二次气溶胶等问题,已引起广泛关注。燃煤电厂SO3的排放主要由煤燃烧以及SCR烟气脱硝中SO2氧化形成,随着选择性催化还原(SCR)脱硝设施的推广应用及高硫煤使用量的增多,控制燃煤SO3排放已迫在眉睫。本文分析综述了燃煤烟气SO3在SCR脱硝过程、低低温电除尘、湿法烟气脱硫以及湿式电除尘中的生成、迁移转化及脱除特性。同时介绍了两类控制燃煤烟气系统中SO3的技术,一是利用现有污染物控制设备的协同作用;二是喷射碱性吸收剂吸收SO3,综合比较了各类碱性吸收剂以及不同喷射位置,提出一种将喷碱性吸收剂与脱硫废水烟道蒸发技术相结合的控制方法。最后指出探究烟气系统中SO3迁移转化特性以及碱性吸附剂脱除SO3的反应机理及其影响因素是未来燃煤烟气SO3控制技术研究的发展方向。  相似文献   

13.
刘祚人  许传龙  汤光华 《化工进展》2021,40(12):6564-6573
以某600MW燃煤机组环保岛系统为研究对象,利用ASPEN Plus软件对烟气污染物脱除过程进行建模,并通过仿真实验对氨氮摩尔比、循环浆液pH、脱硫塔液气比、烟气温度、烟气流量等运行参数进行了敏感性分析,获得了烟气污染物脱除系统对各参数的静态响应特性。结果表明,对于在钒钛基催化剂上发生的选择性催化还原脱硝反应,氨氮摩尔比应略高于0.92,以保证脱硝效率,减小运行成本和氨逃逸量;当氨逃逸量在允许范围内时,提高浆液pH有利于增强脱硫作用和增加石膏产量,同时,应尽量降低脱硫塔液气比以减小运行成本,但液气比不可小于8,否则系统脱硫效率将大幅下降;省煤器出口烟温应小于350℃,控制在310~350℃时,系统综合脱硫脱硝效果较好;对于烟气流量变化,环保岛系统具备较强的适应能力。这些结果为环保岛系统的优化运行和智能控制提供了定量参考。  相似文献   

14.
燃煤电厂是大气汞排放的重要源头,但是我国目前尚无完善的烟气汞控制方案。本文简要综述了国内外烟气脱汞技术研究现状,统计了国内污控设备(包括脱硝设备、除尘设备和脱硫设备)的装机容量。指出污控设备对烟气汞具有一定的协同脱除作用,但是受到我国煤质及运行条件等因素的制约,效果并不理想。本文结合国内某燃煤电厂的实测情况,提出了以下强化措施:①通过添加溴盐溶液,提高选择性催化还原(SCR)对烟气汞的氧化效率;②通过粉末活性炭与溴盐联合使用,强化静电除尘器(ESP)对烟气汞的协同脱除效率,脱汞效率可达90%以上;③通过精确控制脱硫浆液的pH值以及定期外排脱硫浆液,以降低其中汞的再释放率,维持湿法脱硫工艺(WFGD)稳定的烟气汞协同脱除效率;④通过优化和调整锅炉运行条件,提高现有污控设备体系的协同脱汞能力。  相似文献   

15.
随着环境问题的日益严峻及燃煤锅炉超低排放工作的实施,由燃煤引起的大气污染问题及脱硫和除尘设备协同脱除污染物的作用逐渐受到关注。由燃煤释放的SO2和颗粒物对人类健康及自然环境造成严重危害,因此对SO2和颗粒物的治理至关重要。笔者综述了湿法烟气脱硫技术如石灰石-石膏法、氨法等,半干法烟气脱硫技术如循环流化床烟气脱硫技术(CFB)、高倍率灰钙循环烟气脱硫(NGD)等以及干法烟气脱硫技术如电子射线辐射法脱硫技术、活性炭(活性焦、活性半焦)吸附脱硫技术等的发展历史、技术特点及适用范围,并对比分析了各脱硫技术对颗粒物排放特性的影响。结果表明,湿法烟气脱硫技术SO2脱除效率最高,尤其是石灰石-石膏法烟气脱硫技术,总效率可达99%以上。入口颗粒物浓度高于5 mg/m^3时,此技术能够协同脱除烟气中的颗粒物,除尘效率可达50%~80%,脱硫前后粒径分布都为典型的双峰分布,且脱硫后粒径峰值向小粒径偏移,硫酸盐成分增加;入口颗粒物质量浓度低于5 mg/m^3时,出口颗粒物浓度可能出现不降反增的现象,另外,由于其投资和运行成本高,多应用于大型燃煤机组和脱硫剂来源丰富的地区,同时湿法烟气脱硫产物还具有一定的经济效益;半干法和干法烟气脱硫技术SO2脱除效率在60%~90%,与湿法脱硫技术相比具有投资和运行成本低,占地面积小和节约水资源等优点,在中小型锅炉领域如燃煤工业锅炉具有较好的应用前景,但大量脱硫产物和脱硫剂随烟气进入除尘设备,浓度高达1 000 g/m^3以上,为除尘设备造成极大的运行压力,加大了投资和运行成本。目前半干法烟气脱硫技术及干法烟气脱硫技术对颗粒物排放特性的影响研究较少,还需在脱硫系统对颗粒物粒径、成分及形貌特性等方面的影响规律做进一步研究。  相似文献   

16.
燃煤烟气中的SO3会对机组运行及大气环境造成不利影响。为研究燃煤电厂SO3排放特征,本文采取异丙醇吸收法对某300MW超低排放机组污染物控制装置进出口SO3采样,以分析SO3在燃煤机组中的迁移及脱除特性。结果表明:炉膛燃烧过程以及选择性催化还原装置(selective catalytic reduction,SCR)均将部分SO2转化为SO3,炉膛燃烧生成SO3的质量浓度为SO2的0.86%,SCR内SO2/SO3转化率为0.45%。烟气经过空气预热器,SO3浓度降低了5.7%;静电除尘器(electrostatic precipitator,ESP)脱除SO3效果较差,主要由于ESP内烟温在110℃以上,H2SO4酸雾凝结量较少;双级湿法脱硫装置(wet flue gas desulfurization,WFGD)对SO3脱除效率达到81.3%,比国内单级脱硫装置SO3脱除效果高30%~50%;湿式静电除尘器(wet electrostatic precipitator,WESP)脱除SO3效率为23.0%。机组烟囱排放SO3质量浓度为2.025mg/m3(标准),SO3排放因子EF为0.034kg/t。  相似文献   

17.
氮氧化物NOx(NO, NO2和N2O)是全球大气污染的主要污染物之一,引起光化学烟雾、酸雨、臭氧层破坏等环境问题,严重影响人们的生存环境和生活质量,引起了世界各国的广泛关注。针对固定源和移动源燃烧排放,各国制定了日益严格的排放标准。目前主要的脱硝技术分为选择性催化还原(SCR)、选择性非催化还原(SNCR)、氧化脱硝和活性炭吸附脱硝等。SNCR的应用有较高的条件,影响其成功运行的主要因素有温度、氨氮比、氨气在烟气中的分布和停留时间等,故SNCR的工业应用存在一定的局限性。SCR脱硝技术比其它脱硝技术应用更广泛,其中脱硝多安排于除尘脱硫后,此时温度多处于100?250℃之间。为提高SCR脱硝性能,低温SCR脱除NOx是目前研究最热门的烟气脱硝技术。本工作综述了近年来低温SCR脱硝催化剂的研究进展,介绍了锰基催化剂、钒基催化剂及碳基催化剂的发展现状,对单组分Mn基催化剂、负载型Mn基催化剂和复合型Mn基催化剂进行了综述,从V基催化剂的制备对脱销的影响和脱硝机理进行了表述,综述了过渡金属掺杂对C基催化剂的影响,阐述了烟气中H2O和SO2对催化反应的影响及低温SCR反应的脱硝机理,对低温SCR催化剂进行了总结并对其未来发展进行了展望。  相似文献   

18.
王军锋  李金  徐惠斌  刘璐  郑高杰 《化工进展》2019,38(7):3402-3411
石灰石-石膏湿法烟气脱硫(wet flue gas desulfurization,WFGD)工艺具有吸收剂来源广、成本低、脱硫效率高等优点,成为应用最广泛的烟气脱硫工艺。湿法脱硫过程中,燃煤烟气在喷淋浆液的洗涤作用下不仅能高效脱除SO2而且可以协同去除细颗粒物,但同时存在石灰浆液夹带导致出口颗粒物浓度增加的问题。本文首先综述了湿法脱硫的应用现状,对比了湿法脱硫系统前后细颗粒物物性变化,然后概述了应用于湿法脱硫协同去除细颗粒物的新方法,包括脱硫塔内部结构调整以及促进细颗粒物凝聚长大,同时分析了湿法脱硫工艺中采用荷电细水雾吸附细颗粒物并增益脱除SO2的可行性,以期为燃煤电厂细颗粒物排放控制提供借鉴。最后指出未来湿法脱硫技术不仅要实现高脱硫效率,而且能有效脱除未被静电除尘器脱除的细颗粒物,湿法脱硫技术的发展趋势是多种技术耦合实现多污染物的协同脱除。  相似文献   

19.
肖国振  仲兆平  姜超  韩磊  马天霆  张杉  金保昇 《化工进展》2021,40(12):6557-6563
首先利用管式炉对燃煤及燃煤加氯后煤中汞排放进行研究,结果表明,对于神混煤而言,原煤燃烧后烟气中单质Hg0和氧化态汞Hg2+的比例分别为74.3%、25.7%。添加Cl后,烟气中Hg2+的比例有所上升,当加氯量为0.015%、0.030%和0.045%时,烟气中Hg2+的比例分别上升为32.7%、36.1%和40%,随加氯量的增加,其对汞的氧化作用也随之增强。在现场工程示范试验中,利用脱硫废水中的氯氧化烟气中的汞,以达到脱硫废水与烟气中的汞协同脱除的目的。结果表明,随着脱硫废水喷洒煤的量越大,进入SCR烟气中Hg2+比例增大,经过SCR后Hg2+的比例随之增大。由于飞灰对Hg2+的吸附能力较Hg0强,电除尘系统的脱汞效率提高,但脱硫废水喷洒煤对湿电除尘系统的脱汞效率影响不大。总之,脱硫废水喷洒量越大,燃煤机组烟气净化设备对汞协同去除效率也随之提高。  相似文献   

20.
循环流化床锅炉烟气湿式氨法脱硫新工艺   总被引:1,自引:0,他引:1  
郭新法 《化肥工业》2010,37(2):40-41,47
SO_2是造成大气污染的主要因素之一,为减少锅炉排放烟气中SO_2的含量,采用湿式氨法脱硫脱除烟气中的SO_2。实践证明,氨法烟气脱硫工艺达到以废治废的目的,脱硫前、后烟气中SO_2浓度分别为2 200和200 mg/m~3(标态),每年减少SO_2排放量3 738 t。脱硫过程中没有三废产生,不会造成新的二次污染,符合国家关于环保污染治理工程的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号