首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
黄土土水特征曲线与其强度、渗流及本构关系等密切相关。为研究Q3黄土的土水特性,分别进行了Q3原状黄土和重塑黄土的土水特征曲线测试,并用经典的B-C模型和V-G模型对试验结果进行拟合,分析孔隙比对Q3重塑黄土土水特性的影响。结果表明:原状黄土土水特征曲线分为快速减小、缓慢减小和稳定3个阶段,进气值为20kPa左右,随土体排水,空气进入孔隙内部,吸力逐渐增大,稳定阶段土体饱和度很低,土体处于大吸力段,孔隙排水不明显;重塑黄土土水特征曲线整体趋势与原状黄土一致,但孔隙比对其影响较明显,当孔隙比较大时,体积含水率降低引起吸力明显增加,进气值较小,孔隙比较小时,随着吸力值增加,体积含水率降低速率较小,随着孔隙比减小,土体进气吸力值逐渐增大;采用B-C模型和V-G模型与原状黄土试验结果进行对比,B-C模型低吸力段拟合效果不佳,高吸力段拟合较好,V-G模型整体拟合效果良好。  相似文献   

2.
针对现实中土体含水量任意变化的情况,采用滤纸法测定非饱和膨胀土任意循环路径下对应的总吸力和基质吸力,得到了任意含水率变化下的总吸力曲线和土水特征曲线。将曲线进行拟合,利用毛细滞回内变量模型进行计算,通过与试验结果对比,验证了该模型对于膨胀土的适用性。结果表明:滤纸法测得的土水特征曲线与传统方法测得的曲线大致相同。含水量任意变化下的曲线不与完整脱、吸湿曲线重合,相同含水率下,脱、吸湿开始点之间含水率差值越小,脱湿后吸湿的曲线,基质吸力越高;吸湿后脱湿的曲线,基质吸力越低。毛细滞回内变量模型适用于非饱和膨胀土,计算结果与实际值能较好吻合。  相似文献   

3.
非饱和土对水分存在吸力,严重影响土体的工程特性。以一高速铁路地基泥岩为研究对象,应用滤纸法研究含水率及压实作用对其吸力的影响。研究结果表明:随着含水率的增加,基质吸力及总吸力呈非线性减小,减小过程分为骤减阶段、速率减小阶段和吸力稳定阶段;在低含水率情况下,土体中水分以气态形式进行迁移,此时接触滤纸量测的吸力为总吸力;接触滤纸的平衡含水率随着土体含水率的增加呈线性增加;干密度对低饱和度下土样的总吸力影响较大,同一饱和度下土样干密度越大,则基质吸力越大;在单对数坐标中,土水特征曲线近似呈"S"形,选用典型的SWCC模型对试验数据进行了拟合,拟合效果良好。试验结果可用于该类土体相关工程特性的预测及建模。  相似文献   

4.
为研究不同含水率时尾矿砂的基质吸力变化规律,在尾矿砂颗粒级配测试的基础上,根据接触式滤纸法,对某尾矿砂吸湿和脱湿2个阶段分别进行了试验,得到了尾矿砂含水率在9%~40%内的12组基质吸力,建立了尾矿砂吸湿和脱湿过程的土-水特征曲线,并分析了其变化特征。试验结果表明:所测尾矿砂试样属于尾粉质黏土类;采用滤纸法可以获得较大吸力范围内的尾矿砂土-水特征曲线,该曲线近似呈倒“S”形;尾矿砂土-水特征曲线可以分为4个阶段,随含水率的增大,基质吸力阶段性减小;滤纸法测得的尾矿坝基质吸力变化范围较大,吸湿过程中为2 711.095~22.459 kPa,脱湿过程中为28.205~3 607.825 kPa。基质吸力在吸湿和脱湿过程中的变化规律基本一致,但变化路径不同,存在明显的“滞回现象”,脱湿过程中的基质吸力高于吸湿过程。  相似文献   

5.
红黏土是一种具有高度水敏性的典型特殊土,而土水特征曲线(SWCC)是研究红黏土工程性质的重要依据。红黏土在含水率变化时会发生明显的胀缩效应,现有SWCC测试往往缺乏对此效应的考虑,导致所测得的结果具有一定的误差。本文通过压力板仪法和滤纸法,量测了湖南某地区红黏土在不同含水率下所对应的基质吸力,并根据收缩试验掌握了红黏土在不同含水率下的体积变化特征并获取了相应的收缩系数,推导了体积变化修正公式,对SWCC进行了体积变化修正,最后利用V-G模型对修正后的SWCC进行了拟合,探讨了模型参数与初始孔隙比(压实度)的关系,建立了红黏土改进V-G模型。结果表明:红黏土在含水率改变时的体积变化对其SWCC影响很大,同一基质吸力状态下,体积变化修正后红黏土试样的体积含水率和饱和度明显高于修正前的值,且基质吸力越高该差别越明显。对于体变修正后SWCC的V-G模型,模型参数受初始孔隙比的影响较大,其中表征进气值的参数a和孔隙大小分布的参数n与初始孔隙比呈幂函数关系,而表征残余含水率的参数m与初始孔隙比接近线性关系。  相似文献   

6.
土-水特征曲线是描述非饱和土基质吸力与饱和度之间的关系曲线。由于传统的测试方法耗时较长,在常规压力板仪测试系统上增加数据自动采集系统、气泡体积测量系统和储水冲刷系统。通过动态多步流动法试验对原状土和重塑土进行脱湿过程土-水特征曲线的测定,对比分析非饱和土的结构性对其土-水特征曲线的影响。结果表明:改进之后的压力板仪可以实时测定溢出水质量,精确测量气泡体积,节省试验时间;原状土与重塑土的饱和度均随基质吸力和加载时间的增大而减小;相比于原状土,重塑土的脱湿速率和最终溢水量较小,进气值较高,达到残余饱和度状态所需时间较短,其残余含水率也偏大。  相似文献   

7.
针对传统测量吸力试验方法存在的缺陷,采用滤纸法进行了裂隙膨胀土的吸力测定试验,得到了裂隙膨胀土的土水特征曲线,该曲线形态与无裂隙膨胀土的基本相同,均可分为3个阶段,为倒“S”形。相同含水率条件下,脱湿路径下制备的试样基质吸力比吸湿路径下的大,存在明显的滞回现象,可用已有的土水特征曲线计算模型进行拟合分析。试验结果表明,滤纸法可获得任意状态下土体的吸力,不干扰土体的初始状态,可作为测量裂隙膨胀土等特殊性土吸力的一种有效方法。  相似文献   

8.
南水北调中线工程的膨胀土渠道容易遭受季节性冻融的影响。为探究冻融作用对膨胀土土水特征的影响规律,以南阳膨胀土为试验对象,采用滤纸法测定经历不同冻融次数的膨胀土土样的总吸力和基质吸力,绘制其试验散点图,并分别采用VG模型和幂函数模型对基质吸力及总吸力与土体含水率的关系进行拟合。结果表明:随着冻融循环次数的增加,基质吸力和总吸力土水曲线整体向左下方偏移,进气值逐渐减小,持水性能降低;渗透吸力在含水率增大时逐渐减小,但不同冻融次数的渗透吸力数值并无显著差别;采用VG模型和幂函数模型分别拟合本试验中的基质吸力土水曲线和总吸力土水曲线,相关系数高,形式简单,模型参数在冻融循环中逐渐趋于稳定值。研究成果可供处在季节性冻土区的膨胀土工程建设及维护提供参考。  相似文献   

9.
以昆明非饱和红土为研究对象,以脱湿作用作为控制条件,考虑初始干密度的影响,通过滤纸法试验,研究初始干密度对昆明脱湿红土含水吸力特性的影响。结果表明,各脱湿含水率下,脱湿红土的质量含水率、滤纸含水率随初始干密度的增大分别呈缓慢减小、波动减小的变化趋势;各初始干密度下,土-水特征曲线呈现出基质吸力与体积含水率的变化趋势相反的特征;初始干密度一定时,脱湿红土的基质吸力总体上随着体积含水率的增加呈现缓慢减小~快速减小的变化趋势,突变体积含水率为26.5%;体积含水率一定时,随着初始干密度的增大,脱湿红土的基质吸力呈波动升高的变化趋势;基质吸力一定时,脱湿红土的体积含水率随初始干密度的增大亦呈波动升高的变化趋势。初始干密度不同,脱湿过程中红土颗粒的持水能力不同。  相似文献   

10.
土水特征曲线可以反映土中孔隙的空间分布与变化情况,利用土体的孔隙分布特征可以研究 非饱和土的持水特性和结构特性。首先通过室内压力膜仪试验,研究了非饱和黄土的土水特征曲线的 进气压力值、脱湿速率、孔径分布参数等指标与干密度、击实含水率的关系;然后基于孔径分布计算理论 和试验结果,给出了非饱和黄土的孔径分布曲线,用来评价土体内部孔径的分布情况,分析了非饱和黄 土干密度和击实含水率对土的宏细观含水状态和结构性的影响机理。结果表明:增大非饱和土的干密 度,可使孔径变小,孔隙结构分布范围变窄,土颗粒从架状结构向致密结构转换,基质吸力变化引起含水 率变化较小,持水特性提高,土体的脱湿速率变慢,进气值呈现增大趋势;而击实含水率位于最优含水率 湿测时,影响并不明显。  相似文献   

11.
陶高梁  孔令伟 《水利学报》2017,48(6):702-709
从微观角度揭示土体变形对饱和/非饱和渗透系数的影响机理,建立相应的预测方法,对于饱和/非饱和土的渗流分析及水力耦合研究具有重要的科学意义。利用流体力学理论,建立了微观孔隙通道渗透系数与等效孔径的关系,在此基础之上,结合毛细理论建立了饱和/非饱和渗透系数与土-水特征曲线的关系模型,并利用已有试验数据验证了模型的合理性。结合该模型与变形条件下土-水特征曲线预测方法,对变形条件下武汉黏性土饱和/非饱和渗透系数进行预测,结果表明黏性土在压缩变形条件下:饱和渗透系数呈数量级的减小,预测值与实测值均吻合较好;双对数坐标下,非饱和相对渗透系数在进气值之后随基质吸力增加而减小,不同初始孔隙比条件下其斜率近似不变,整体呈现"毛刷型"分布,相同基质吸力条件下,初始孔隙比越小,相对渗透系数越大;非饱和渗透系数,进气值之前近似为饱和渗透系数,进气值之后随基质吸力增大而减小,不同初始孔隙比的变化线近似重合。  相似文献   

12.
为弥补当前对非饱和粉质黏土细观结构研究的欠缺,基于Fredlund双应力变量理论、Fredlund-Xing土-水特征模型,通过室内试验从细观结构、矿物成分至非饱和力学特性方面展开对冰水沉积粉质黏土的系统研究,查明非饱和抗剪强度及参数变化特征,深入分析细观作用机理。研究表明:冰水沉积粉质黏土非饱和抗剪强度随基质吸力增大而提高,增长速率逐渐降低,内摩擦角φ′与含水率构成对数函数关系,内聚力ctotal1具有峰值特征,峰值点含水率约为10.24%。土中的矿物组分遇水发生的水解、离子置换等作用对土体结构造成较大影响,在低基质吸力条件下造成宏观非饱和抗剪强度的损伤,根据其作用特征将非饱和抗剪强度随基质吸力的变化过程划分为3个阶段,建立了适用于冰水沉积粉质黏土的三维破坏包络面的概化模型。与此同时,分析发现材料参数φb在低基质吸力段并不为常数,以某一初始值逐渐减小,变化曲线呈反“S”形,最终无限趋近于0。  相似文献   

13.
彭忠瑛  时红莲  蔡华炜 《人民黄河》2012,34(4):133-134,137
通过直剪试验,探讨了基质吸力与非饱和黏土抗剪强度的关系,结果表明:含水量对非饱和黏土基质吸力的影响较大,随着基质吸力的增大含水量减小,这种减小的趋势在基质吸力小于400 kPa时较明显;非饱和黏土抗剪强度与基质吸力之间的关系是非线性的,且存在转折点;基质吸力对非饱和黏土抗剪强度的提高有限。  相似文献   

14.
残积土在我国南方分布十分广泛,是工程建设及地质灾害评估中主要遇到的土体之一。非饱和状态下,残积土边坡土体的工程性质不仅取决于土的组成、结构和应力状态,还与土中的吸力密切相关;土-水特征曲线表达了土体中含水量与吸力的关系,是非饱和土研究的重要内容之一。选取福建省有典型代表的凝灰质砂砾岩残积土、凝灰岩残积土以及花岗斑岩残积土3种类型土作为试验土样,测定土样完整的脱湿、吸湿循环过程的土-水特征曲线。鉴于基质吸力测量困难,在Barden非饱和土分类方法的基础上,通过分析具有实际工程意义的含水量情况(饱和度介于50%~90%),总结出的利用饱和度预测基质吸力的简易方法具有针对性和实用性。  相似文献   

15.
根据影响非饱和土渗透系数变化的主要因素,选取合理特征点将土-水特征曲线划分成4个阶段。在此基础上,对大量数据进行统计分析,建立了一种分段简化模型,用于描述级配不良的非黏性土的非饱和渗透系数曲线,只需知道该模型中特征点的相关参数即可得到完整渗透系数曲线,并通过现有数据进行了验证分析。验证结果表明:在低基质吸力(0<ψ≤ψa)时,lnK-ψ曲线呈线性变化;而当θb<θ≤θa时,lnK-lnθ曲线也有类似变化规律。  相似文献   

16.
根据Schindler(1980)提出的简化蒸发法,在微型土柱的两个高度安装张力计测定土壤吸力,并采用称重法得到土壤含水率,通过公式再计算土壤水分特征曲线和导水率曲线。结果表明:温度的差异影响土壤水分特征曲线和导水率曲线。在砂土、砂壤土-1和砂壤土-2的水分特征曲线上,当吸力小于10 kPa时,同一吸力时25℃曲线的含水率均小于16℃曲线的含水率;当吸力大于10 kPa时,砂土和砂壤土-2在同一吸力时25℃曲线的含水率均大于16℃曲线的含水率,而砂壤土-1无此变化。在砂土、砂壤土-1和砂壤土-2的导水率曲线上,砂土在10kPa以下时25℃导水率值低于16℃导水率值,其他情况下,在同一吸力时,三种土样的25℃导水率值均高于16℃导水率值。  相似文献   

17.
本文分析了3种应用于离心模型中测量非饱和土基质吸力的微型传感器。其中,电阻率微型传感器测量饱和度,通过土水特征曲线来求基质吸力,只能间接测量。热传导传感器相对体积较大,不受周围土体盐分的影响,适用于现场长期观测,但应用于离心模型还有待改进。改进的PDCR-81及其类似的微型张力计,体积微小,可直接测量非饱和土中的基质吸力。但其饱和程度会影响其测值,对饱和要求较高。为了进一步研究PDCR-81在离心模型试验中的测量基质吸力的可行性,笔者对PDCR-81做适当改进,应用其测量了非饱和土中吸力。试验发现,严格的饱和过程可以延长基质吸力稳定时间。  相似文献   

18.
王理想  宋新江  黄铭  王淼 《水利学报》2023,54(3):311-322
分散性黏土冻融循环导致的破坏非常普遍,在我国东北地区水利工程中尤为严重。开放系统中分散性黏土冻融特性有别于非分散性黏土,土体导热系数是土体热分析最重要的参数之一。本文以分散性黏土为研究对象,阐明了影响分散性黏土导热系数的因素;基于Johansen法的改进,建立了适合分散性黏土特点的导热系数预测方法。研究表明,分散性黏土导热系数的影响因素主要为矿物成分、含水率、孔隙率(干密度)和温度。土体温度为负温时,温度越低,土的导热系数越大。初始含水率低于10%,土的导热系数不受温度的影响;初始含水率大于15%,土的导热系数受温度影响较大。饱和状态下的分散性黏土导热系数有别于非分散性黏土,采用串联/并联预测模型方法来计算。所提出的分散性黏土导热系数预测方法和公式,可反映土体温度、土体矿物成分、含水率、干密度的影响,与试验结果吻合,并可为分散性黏土研究和工程应用提供参考和指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号