首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

2.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

3.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

4.
Series of UV excited Ba3Lu(PO4)3:Tb3+,Mn2+ phosphors with tunable green to red emissions had been prepared using solid state reactions. Powder X-ray diffraction and Rietveld structure refinement were used to investigate the phase purity and crystal structure of the prepared samples. Under UV excitation, the Ba3Lu(PO4)3:Tb3+,Mn2+ samples exhibited not only the typical Tb3+ emission peaks but also the broad emission band of Mn2+ ions due to the efficient Tb3+→Mn2+ energy transfer which had been verified by luminescence spectra and decay curves. Utilizing the Inokuti-Hirayama model, the Tb3+→Mn2+ energy transfer mechanism was determined to be the electronic dipole–quadrupole interaction. Moreover, the emission spectra of Ba3Lu(PO4)3:0.80Tb3+,0.015Mn2+ sample at different temperatures manifested that our prepared phosphors possessed good thermal stability. The luminescence properties investigation results revealed the potential value of Ba3Lu(PO4)3F:Tb3+,Mn2+ in application for UV excited phosphor converted white light emitting diodes.  相似文献   

5.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

6.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

7.
A series of Ce3+, Tb3+, Eu3+ tri‐doped Ba2Y(BO3)2Cl red‐emitting phosphor have been synthesized by solid‐state method. The Ce3+→Tb3+→Eu3+ energy‐transfer scheme has been proposed to realize the sensitization of Eu3+ ion emission by Ce3+ ions. Following this energy‐transfer model, near‐UV convertible Eu3+‐activated red phosphors have been obtained in Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ phosphors. Energy transfers from Ce3+ to Tb3+, and Tb3+ to Eu3+, as well as corresponding energy‐transfer efficiencies are investigated. The combination of narrow‐line red emission and near‐UV broadband excitation makes Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ as a novel and efficient red phosphor for NUV LED applications.  相似文献   

8.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

9.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

10.
《Ceramics International》2015,41(4):5554-5560
A series of color-tunable NaCaBO3: Ce3+, Tb3+ phosphors have been synthesized on the basis of efficient Ce3+→Tb3+ energy transfer. The photoluminescence emission and excitation spectra, the lifetime, and the effect of Tb3+ concentration are investigated in detail. The enhanced photoluminescence of Tb3+ with sharp emission lines could be obtained by the broad excitation band from the allowed 4f–5d absorption of Ce3+ ions. The intensity ratio of blue emission from Ce3+ and green emission from Tb3+ can be tuned by adjusting their concentrations. The energy transfer from Ce3+ to Tb3+ in NaCaBO3 was found to be an electric dipole–quadrupole interaction.  相似文献   

11.
《Ceramics International》2019,45(16):20316-20322
Tb3+ is a typical green emitting luminescence center in inorganic compounds. However, the absorption of Tb3+ is very weak in ultraviolet spectral region (from 240 to 400 nm). Ce3+ is often used as a sensitizer to transfer energy to Tb3+. In this paper, Ce3+ and Tb3+ were co-doped into a novel aluminates-borates LaAl2.03B4O10.54. Ce3+ can absorb UV light (from 240 to 340 nm) and transfer absorbed energy to co-doped Tb3+ effectively and bring bright green emission of Tb3+. The crystal structure and fluorescence spectra of phosphors, the efficiency of energy transfer between Ce3+ and Tb3+, decay dynamics, the thermal stability and internal quantum efficiency of luminescence have been investigated in detail. These results indicate that the color tunable LaAl2.03B4O10.54: Ce3+, Tb3+ phosphor is a potential green-emitting material. Especially, analysis about the relationship of the doping concentration of luminescence centers and thermal stability of luminescence points out a feasible way to enhance the thermal stability of luminescence in the future.  相似文献   

12.
Metal nitrates are used to synthesize a series of novel Ba2Y1-xV3O11:xSm3+ nanophosphors via urea-assisted solution combustion route. X-ray diffraction (XRD), diffuse reflectance (DR), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy were employed to analyse the structure, morphology, photoluminescent behaviour and energy transfer mechanism. Rietveld analysis over Ba2Y0.98Sm0.02V3O11 showed that Y3+ ions can be well-replaced by trivalent samarium ions without resulting any major alteration in the crystal structure of host lattice. Furthermore, the lattice parameters were determined for both the host as well as the doped composition. The Scherrer equation yielded an average particle size of 44?nm, which in turn was further confirmed by TEM micrographs. The optical band-gap of the host (3.92?eV) was calculated from the diffuse reflectance spectra. Moreover, the photoluminescence spectral studies showed that under near ultra-violet (NUV) excitation of 340?nm, our nanophosphor powder exhibits the characteristic emission peaks of trivalent samarium along with the emission of VO43? (501?nm) group. The excitation energy transfer from vanadate group to Sm3+ produced a systematic color tunablity in white region itself. The optimum Sm3+ concentration for better luminescence was found to be 2?mol%. The critical distance for energy transfer was calculated to be 29.02?Å, which in turn assisted to shortlist the mechanism responsible for luminescence-quenching (dipole-dipole) arising from the over-doping of the activator. The photoluminescence decay curves revealed the decay kinetics of 4G5/2 electronic state. Finally, the calculation of CIE color coordinates from emission spectra in MATLAB program unveiled a somewhat white-light emitter which may find potential applications in phosphor-converted white light emitting diodes (PC-WLED) under near-ultraviolet (NUV) excitation.  相似文献   

13.
A series of newly developed color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors were successfully prepared in this study. The crystal structures of the prepared phosphors were revealed to be hexagonal with space group P63/m, and the lattice parameters were evaluated via utilizing the Rietveld refinement method. Upon excitation at 288 nm, the emission spectra of Ce3+and Tb3+ ions co‐doped Ca3La6(SiO4)6 phosphors included a blue emission band and several emission lines. The blue emission band with a peak at 420 nm originated in the fd transitions of Ce3+ ions, and the emission lines in the range of 450–650 nm were assigned to the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. Increasing the doping content of Tb3+ ions considerably strengthened Tb3+ emission and reduced Ce3+ emission owing to the energy transfer from Ce3+ to Tb3+ ions. The mechanism of the energy transfer was confirmed to be a dipole–dipole interaction. The effective energy transfer from Ce3+ to Tb3+ ions caused a color shift from purplish‐blue to yellowish‐green. Color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors have the potential to be utilized in light‐emitting diodes with proper modulation of the amount of Tb3+ ions.  相似文献   

14.
《Ceramics International》2015,41(7):8988-8995
A series of white-light-emitting phosphors of single-phase Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ were synthesized by conventional solid-state reaction. The crystal structure of the host was characterized by X-ray diffraction and investigated by Rietveld refinement. Photoluminescence properties were studied in detail. The energy transfer from Ce3+ to Tb3+ in Ba2Mg(BO3)2 host was investigated and demonstrated to be a resonant type via a quadrupole–quadrupole mechanism. White light with wavelength tunable was realized by coupling the emission bands peaking at 417, 543 and 626 nm attributed to Ce3+, Tb3+ and Eu2+, respectively. By properly tuning the relative composition of Ce3+(Na+)/Tb3+/Eu2+, optimized Commission Internationale de l׳Eclairage (CIE) chromaticity coordinates (0.363, 0.295), high color rendering index (CRI) 90 and low correlated color temperature (CCT) 3793 K were obtained from the phosphor of Ba1.90Ce0.04Na0.04Eu0.02Mg0.94Tb0.06(BO3)2 upon the excitation of 296 nm UV radiation. These results indicate that Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor has a potential application as an UV radiation down-converting phosphor in white-light-emitting diodes.  相似文献   

15.
Ce3+/Tb3+ co-doped NaMgBO3 phosphors were successfully synthesized by solid-state method. Under 381 nm excitation, the cyan emission owing to the 5d → 4f of Ce3+ ions and green emissions arising from the 5D4 → 7FJ (J = 6, 5, 4, and 3) transitions of Tb3+ ions were seen in all the phosphors. Through theoretical analysis, one knows that the energy transfer from Ce3+ to Tb3+ ions with high efficiency of 83.74% was contributed by dipole–dipole transition. Furthermore, the internal quantum efficiency of NaMgBO3:0.01Ce3+,0.03Tb3+ phosphor was 54.28%. Compared with that of at 303 K, the emission intensity of the developed products at 423 K still kept 73%, revealing the splendid thermal stability of the studied phosphors. Through utilizing the resultant phosphors as cyan-green components, the fabricated white-LED device exhibited an excellent correlated color temperature of 2785 K, high color-rendering index of 85.73, suitable luminance efficiency of 25.00 lm/W, and appropriate color coordinate of (0.4279, 0.3617). Aside from the superior photoluminescence, the synthesized phosphors also exhibited excellent cathode-luminescence properties which were sensitive to the current and accelerating voltage. Furthermore, the NaMgBO3:0.01Ce3+,0.03Tb3+ phosphors with multi-mode emissions were promising candidates for optical anti-counterfeiting. All the results indicated that the Ce3+/Tb3+ co-doped NaMgBO3 phosphors were potential multi-platforms toward white-LED, field emission displays, and optical anti-counterfeiting applications.  相似文献   

16.
Self-assembled three-dimensional Yb3+(Ln = Er, Ho, Tm) co-doped Gd2O3 up-converted (UC) phosphors were synthesized by a facile co-precipitation method, and their morphologies and microstructures were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. Under the excitation at 980 nm, spectral pure three primary colors red, green and blue (RGB) emissions were respectively achieved in Yb3+/Er3+, Yb3+/Ho3+ and Yb3+/Tm3+ co-doped Gd2O3 phosphors, in which spectral color purities were tuned by adjusting the doping concentration, annealing temperature, excitation power density and the pulse-width of 980 nm laser. These results provide deeper insights into modulating spectral color purities of up-converted emission, and the potential applications of spectrally pure RGB up-converted materials in fingerprint recognition and multi-color printing were also investigated.  相似文献   

17.
Color-tunable up-conversion powder phosphors Zn(AlxGa1-x)2O4: Yb3+,Tm3+,Er3+ were synthesized via high temperature solid-state reaction. Also, the morphological and structural characterization, up-conversion luminescent properties were all investigated in this paper. In brief, under the excitation of a 980?nm laser, all powders have same emission peaks containing blue emission at 477?nm (attributed to 1G43H6 transition of Tm3+ ions), green emission at 526?nm and 549?nm (attributed to 2H11/24I15/2 and 4S3/24I15/2 transition of Er3+ ions respectively), red emission at about 659?nm and 694?nm (attributed to 4F9/24I15/2 transition of Er3+ ions and 3F33H6 transition of Tm3+ ions, respectively), which are not changed after the doping of Al3+ ions. However, the doping of Al3+ ions can enhance the up-conversion luminescent intensity and efficiency, while the emission color of as-prepared powder phosphors can be tunable by controlling the doping amount of Al3+ ions. Taking Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er as the cut-off value, the emissions have clear blue-shift firstly and then show obvious red-shift with the increasing doping of Al3+ ions. Stated thus, pink emission in ZnAl2O4:Yb,Tm,Er, purplish pink emission in ZnGa2O4:Yb,Tm,Er and Zn(Al0.9Ga0.1)2O4:Yb,Tm,Er, purple emission in Zn(Al0.1Ga0.9)2O4:Yb,Tm,Er and Zn(Al0.3Ga0.7)2O4:Yb,Tm,Er, purplish blue emission in Zn(Al0.7Ga0.3)2O4:Yb,Tm,Er, blue emission in Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er can be observed, which confirm the potential applications of as-prepared Zn(AlxGa1-x)2O4:Yb3+,Tm3+,Er3+ powder phosphors in luminous paint, infrared detection and so on.  相似文献   

18.
Novel blue‐green emitting Ce3+‐ and Tb3+‐activated K2CaP2O7 (KCPO) luminescent materials were synthesized via a solid‐state reaction method. X‐ray diffraction, luminescence spectroscopy, decay time, and fluorescent thermal stability tests have been used to characterize the prepared samples. The KCPO:Ce3+,Tb3+ luminescence spectra show broad band of Ce3+ ions and characteristic line of Tb3+ ion transition (5D47F5). The color variation in the light emitting from blue to green under UV excitation can be obtained by tailoring the Tb3+ content in KCPO:Ce3+. Besides, Ce3+ ions obviously intensify Tb3+ ion emission through an effective energy transfer process, which was confirmed from decay curves. The energy transfer efficiency was determined to be 82.51%. A resonant type mechanism via the dipole–quadrupole interaction can be proposed for energy transfer. As a whole, the KCPO:Ce3+,Tb3+ phosphor exhibits excellent performance in the range from 77 to 673 K, indicating the phosphors are highly potential candidates for solid‐state lighting.  相似文献   

19.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

20.
《Ceramics International》2016,42(11):13004-13010
A series of Dy3+ or/and Eu3+ doped Y2Mo4O15 phosphors were successfully synthesized at a low temperature of 600 °C via solid state reaction. The as-prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), photoluminescence (PL) excitation, emission spectra and PL decay curves. XRD results demonstrate that Y2Mo4O15: Dy3+, Eu3+ has the monoclinic structure with the space group of p21/C(14). Under the excitation of ultraviolet (UV) or near-UV light, the Dy3+ and Eu3+ ions activated Y2Mo4O15 phosphors exhibit their characteristic emissions in the blue, yellow and red regions. The emitting light color of the Y2Mo4O15: 0.08Dy3+, yEu3+ phosphors can be adjusted by varying the concentration ratio of Dy3+ to Eu3+ ions and a white light is achieved when the doping concentration of Eu3+ is 5%. In addition, the energy transfer from Dy3+ to Eu3+ is also confirmed based on the luminescence spectra and decay curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号