首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray diffraction Rietveld refinement of Ba[(Fe1−xCox)1/2Nb1/2]O3 with 0 ≤ X ≤ 1 shows cubic structure formation with space group Pm3m. No distinct tilting of oxygen octahedron is observed. The dielectric measurement of such a cubic system exhibited giant values (?′ > 104) in the temperature range of 298-483 K and frequency range of 102-105 Hz. An analysis of the permittivity, electric modulus, and electrical conductivity properties in these systems confirmed the presence of oxygen vacancies induced dipolar relaxation. Our investigations show that the observed extremely high dielectric constant values are predominantly the result of oxygen vacancies induced dipoles produced at the grain boundaries. Additional significant intrinsic contributions to the permittivity comes from the directly doped electrons at the unit cell, as indicated by the enhancement in the observed values of the permittivity on replacement of Fe3+ (3d5) by Co3+ (3d6). The contributions of the doped free charges and the oxygen vacancy induced dipoles are separated using the Jump Relaxation Model.  相似文献   

2.
The Ca1−xSrxCu3Ti4O12 (CSCTO) giant dielectric ceramics were prepared by conventional solid-state method. X-ray diffraction patterns revealed that a small amount of Sr2+ (x < 0.2) had no obvious effect on the phase structure of the CSCTO ceramics, while with increasing the Sr2+ content, a second phase of SrTiO3 appeared. Electrical properties of CSCTO ceramics greatly depended on the Sr2+ content. The Ca0.9Sr0.1Cu3Ti4O12 ceramics exhibited a higher permittivity (71,153) and lower dielectric loss (0.022) when measured at 1 kHz at room temperature. The ceramics also performed good temperature stability in the temperature range from −50 °C to 100 °C at 1 kHz. By impedance spectroscopy analysis, all compounds were found to be electrically heterogeneous, showing semiconducting grains and insulating grain boundaries. The grain resistance was 1.28 Ω and the grain boundary resistance was 1.31 × 105 Ω. All the results indicated that the Ca0.9Sr0.1Cu3Ti4O12 ceramics were very promising materials with higher permittivity for practical applications.  相似文献   

3.
We have prepared BaCd2−xSrxFe16O27 (x = 0, 0.5, 1, 1.5 and 2.0) W-type hexagonal ferrites by standard ceramic method. In this work, the structural, dielectric and magnetic properties have been studied of the prepared samples. The XRD analysis of the samples reveals single phase behavior sintered at 1400 °C for 6 h. The saturation magnetization (Ms) shows increasing behavior with the increasing concentration of Sr2+. While the coercivity (Hc) decreases rapidly up to 409 G for x = 1.5 and then increases for (x > 1.5) due to the preference of Cd2+ for tetrahedral sites and the number of spin-down magnetic ions. The real and imaginary parts of the dielectric constant (?′,?″) and dielectric loss tangent (tan δ) are determined in the frequency range 0.1-107 Hz. It is observed that both the real and imaginary parts of the dielectric constant and tan δ decrease with the increasing concentration of Sr2+, which is due to the contribution of Cd2+ ions in addition to Fe3+ and Fe2+ ions to interfacial polarization.  相似文献   

4.
NixMn0.8−xMg0.2Fe2O4; 0.0≤ x ≤0.40 was prepared by standard ceramic technique, presintering was carried out at 900 °C and final sintering at 1200 °C with heating/cooling rate 4 °C/min. X-ray diffraction analyses assured the formation of the samples in a single phase spinel cubic structure. The calculated crystal size was obtained in the range of 75-130 nm. A slight increase in the theoretical density and decrease in the porosity was obtained with increasing the nickel content. This result was discussed based on the difference in the atomic masses between Ni (58.71) and Mn (54.938). IR spectral analyses show four bands of the spinel ferrite for all the samples. The conductivity and dielectric loss factor give nearly continuous decrease with increasing Ni-content. This was discussed as the result of the significant role of the multivalent cations, such as iron, nickel, manganese, in the conduction mechanism. Anomalous behavior was obtained for the sample with x = 0.20 as highest dielectric constant, highest dielectric loss and highest conductivity. This anomalous behavior was explained due to the existence of two divalent cations on B-sites with the same ratio, namely, Mg2+ and Ni2+.  相似文献   

5.
The crystallization process of bismuth substituted yttrium iron garnet (BixY3−xFe5O12; x = 0, 1, 2) powder prepared by the metal-organic decomposition method has been studied with various sintering temperatures. The pure garnet phase was observed for the x = 1 powder at 900 °C sintering temperature, whereas the x = 0, 2 powder showed secondary phases. The x = 0 powder showed a similar crystallization process to that of the solid state reaction method. For the x =1, 2 powders, it is proposed that the lowering of the crystallization temperature is due to the lowered stability of the intermediate phase. The infrared spectroscopy and magnetic properties were also investigated. The pure garnet phase showed three absorption bands located at 563, 598, 655 cm−1 that shifted to 555, 588, 639 cm−1 along with an increase of bismuth concentration. The maximum values of saturation and remanence magnetization and the minimum value of coercivity were observed for the x = 1 powder sintered at 900 °C, which were 20.8 emu/g, 2.67 emu/g, and 31.9 Oe, respectively.  相似文献   

6.
Nanocrystalline Ca1−xSmxMnO3 (0 ≤ x ≤ 0.4) manganites were prepared by a soft chemical method (Pechini method) followed by auto-combustion and sintering in air at 1073 or 1473 K. Single-phase powders with general composition Ca1−xSmxMnO3 were obtained after 18 h annealing. The particle and grain sizes of the substituted Sm-manganites did not exhibit variation with samarium content, but increase with increasing the sintering temperature. All manganites show two active IR vibrational modes near 400 and 600 cm−1 characteristic of the BO6 octahedron vibrations.For the samples sintered at Ts = 1473 K, the partial substitution of calcium by samarium in the CaMnO3 phase induces a marked decrease in the electrical resistivity, in the temperature range of 300-900 K, and at the same time a metal-to-insulator transition occurs; for Ts = 1073 K all the samples present semiconductor behaviour. With the increase of the annealing temperature the grain size increases and a metal-semiconductor transition appears. The results can be ascribed to the Mn4+/Mn3+ ratio and particle grain size. The effects of particle size on the electrical properties can be attributed to the domain status, changes in the Mn-O-Mn bond angle and Mn-O bond length.  相似文献   

7.
(1 − x)(K0.48Na0.52)NbO3-xBiCoO3 [KNN-xBC] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. The effects of the BiCoO3 addition on the phase structure, dielectric, piezoelectric and ferroelectric properties of KNN-xBC ceramics were systematically investigated. The polymorphic phase transition (PPT) from rhombohedral to orthorhombic phase around room temperature was identified in the composition range of 0.01 ≤ x ≤ 0.02, and the improved electrical properties were induced by this PPT. The KNN-0.01BC ceramics near PPT exhibit optimum electrical properties: d33 ∼ 165 pC/N, kp ∼ 0.40, Pr ∼ 31.0 μC/cm2, and Ec ∼ 12.6 kV/cm. These results indicate that the enhanced piezoelectric properties for alkali niobate can be achieved by forming the coexistence of rhombohedral and orthorhombic phases.  相似文献   

8.
The Li2ZnxCo1−xTi3O8 (x = 0.2-0.8) solid solution system has been synthesized by the conventional solid-state ceramic route and the effect of Zn substitution for Co on microwave dielectric properties of Li2CoTi3O8 ceramics has also been investigated. The microwave dielectric properties of these ceramics show a linear variation between the end members for all compositions. The optimized sintering temperatures of Li2ZnxCo1−xTi3O8 ceramics increase with increasing content of Zn. The specimen with x = 0.4 sintered at 1050 °C/2 h exhibits an excellent combination of microwave dielectric properties with ?r = 27.7, Qu × f = 57,100 GHz and τf = −1.0 ppm/°C.  相似文献   

9.
Bi2SexTe3−x crystals with various x values were grown by Bridgman method. The electrical conductivity, σ, was found to decrease with increasing Se content. The highest σ of 1.6 × 105 S m−1 at room temperature was reached at x = 0.12 with a growth rate of 0.8 mm h−1. The Seebeck coefficient, S, was less dependent on Se content, all with positive values showing p-type characteristics, and the highest S was measured to be 240 μV K−1 at x = 0.24. The lowest thermal conductivity, κ, was 0.7 W m−1 K−1 at x = 0.36. The electronic part of κ, κel, showed a decrease with increasing Se content, which implies that the hole concentration as the main carriers was reduced by the addition of Se. The highest dimensionless figure of merit, ZT, at room temperature was 1.2 at x = 0.36, which is attributed to the combination of a rather high electrical conductivity and Seebeck coefficient and low thermal conductivity.  相似文献   

10.
Lead-free piezoelectric ceramics Sr2−xCaxNaNb5O15 + y wt% MnO2have been prepared by the conventional solid state reaction method. Our results reveal that Ca2+and Mn ions have entered into the Sr2NaNb5O15 lattices to form a solid solution with tungsten-bronze structure. The substitution of Ca2+ induces a decrease in piezoelectric coefficient d33, electromechanical coupling factors kp and kt, while, the addition of Mn ions decreases the sintering temperature and effectively promotes the densification of the ceramics. The effect of substitution of Ca2+and Mn ions on the structure, electrical properties and diffused phase changing were investigated systematically. For the ceramic with x = 0.05 and y = 0.5, the piezoelectric, dielectric and ferroelectric properties become optimum, giving a piezoelectric coefficient d33 = 190 pC/N, electromechanical coupling factors kp = 13.4% and kt = 36.5%, ?r = 2123, loss tangent tan δ = 0.038, remanent polarization Pr = 4.76 μC/cm2, coercive field Ec = 12.68 kV/cm, and Curie temperature Tc = 260 °C.  相似文献   

11.
CuIn1−xAlxS2 thin films (x = 0, 0.09, 0.27, 0.46, 0.64, 0.82 and 1) with thicknesses of approximately 1 μm were formed by the sulfurization of DC sputtered Cu-In-Al precursors. All samples were sulfurized in a graphite container for 90 min at 650 °C in a 150 kPa Ar + S atmosphere. Final films were studied via X-ray diffraction (XRD), scanning electron microscopy (SEM) and micro-Raman spectroscopy. It was found that all samples were polycrystalline in nature and their lattice parameters varied slightly nonlinearly from {a = 5.49 Å, c = 11.02 Å} for CuInS2 to {a = 5.30 Å, c = 10.36 Å} for CuAlS2. No unwanted phases such as Cu2−xS or others were observed. Raman were recorded at a room temperature and the most intensive and dominant A1 phonon frequency varied nonlinearly from 294 cm−1 (CuInS2) to 314 cm−1 (CuAlS2).  相似文献   

12.
The effect of different mild post-annealing treatments in air, at 270 °C, for 4-6 min, on the optical, electrical, structural and chemical properties of copper sulphide (CuxS) thin films deposited at room temperature are investigated. CuxS films, 70 nm thick, are deposited on glass substrates by vacuum thermal evaporation from a Cu2S:S (50:50 wt.%) sulphur rich powder mixture. The as-deposited highly conductive crystalline CuS (covellite) films show high carrier concentration (∼1022 cm−3), low electrical resistivity (∼10−4 Ω cm) and inconclusive p-type conduction. After the mild post-annealing, these films display increasing values of resistivity (∼10−3 to ∼10−2 Ω cm) with annealing time and exhibit conclusive p-type conduction. An increase of copper content in CuxS phases towards the semiconductive Cu2S (chalcocite) compound with annealing time is reported, due to re-evaporation of sulphur from the films. However, the latter stoichiometry was not obtained, which indicates the presence of vacancies in the Cu lattice. In the most resistive films a Cu2O phase is also observed, diminishing the amount of available copper to combine with sulphur, and therefore the highest values of optical transmittance are reached (65%). The appearance on the surface of amorphous sulphates with annealing time increase is also detected as a consequence of sulphur oxidation and replacement of sulphur with oxygen. All annealed films are copper deficient in regards to the stoichiometric Cu2S and exhibit stable p-type conductivity.  相似文献   

13.
Ca2−xPrxMnO4 (0 ≤ x ≤ 0.2) polycrystalline ceramic powders were synthesized by sol-gel method. The X-ray diffraction (XRD) profiles were indexed with a tetragonal and orthorhombic structure for Ca2MnO4 and Pr-doped compounds, respectively. Electrical properties were investigated by dc and ac electrical measurements. The dc measurements have revealed an insulating state for all compounds in 80-350 K temperature range. Both dc and ac measurements have highlighted a charge ordering (CO) transition at TCO = 233 and 245 K for x = 0.175 and 0.2, respectively. The CO state was found to be accompanied by a jump of the hopping activation energy and a rapid rise of both dielectric permittivity and imaginary part of ac electrical impedance.  相似文献   

14.
The influence of Zr substitution for Ti on the microwave dielectric properties and microstructures of the Mg(ZrxTi1−x)O3(MZxT) (0.01 ≤ x ≤ 0.3) ceramics was investigated. The quality factors of Mg(ZrxTi1−x)O3 ceramics with x = 0.01-0.05 were improved because the solid solution of a small amount of Zr4+ substitution in the B-site could increase density and grain size. An excess of Zr4+ resulted in the formation of a great deal of secondary phase that declined the microwave dielectric properties of MZxT ceramics. The temperature coefficient of resonant frequency (τf) of Mg(ZrxTi1−x)O3 ceramics slightly increased with increasing Zr content, and the variation in τf was attributed to the formation of secondary phases.  相似文献   

15.
Nanocrystals of a new complex perovskites ceramic oxide, barium thulium antimony oxide - Ba2TmSbO6, were synthesized using a single step auto-ignition combustion process. The combustion product was single phase and composed of aggregates of nanocrystals of sizes in the range 20-50 nm. Ba2TmSbO6 crystallized in cubic perovskite structure with lattice parameter, a = 8.4101 Å. The polycrystalline fluffy combustion product was sintered to high density (∼97%) at ∼1450 °C for 4 h. Resistivity of the sintered specimen was ∼5 MΩ/cm. The Ba2TmSbO6 has dielectric constant (?′) and dielectric loss (tan δ) of 17 and ∼10−4 at 5 MHz; the new material would probably be developed as a low-loss dielectric material.  相似文献   

16.
Bi1−xHoxFeO3 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) polycrystalline ceramics were synthesized by a solid-state reaction and their structural, absorption, Raman scattering, impedance and magnetic properties were investigated. The substitution of rare earth Ho for Bi was found to decrease the impurity phase in BiFeO3 ceramics. There appears an anomalous change in the lattice constants, optical band gap as well as the impedance spectroscopy and magnetization of samples at x = 0.10, suggesting a limit of dissolubility of Ho doped ions in BiFeO3. Additionally, the Raman measurement performed for the lattice dynamics study of Bi1−xHoxFeO3 samples reveals a band centered at around 1000-1300 cm−1 which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi1−xHoxFeO3 samples. Ho-doped BiFeO3 also showed a ferromagnetic-like behavior with Mr = 1070 × 10−4 and Ms = 1.60 emu/g for optimum content x = 0.10, which is similar to the solid solution system of BiFeO3.  相似文献   

17.
Bismuth potassium titanate (Bi0.5K0.5TiO3; BKT) and praseodymium-doped BKT (Bi0.5(1−x)PrxK0.5TiO3; BPKT) powders were synthesised using the soft combustion technique. Fine particles of 10-100 nm of BKT and BPKT were produced. A single phase BKT was obtained with a minimum of 0.5 mol of glycine. Various compounds of Bi0.5(1−x)PrxK0.5TiO3 where x = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20 were prepared. Pure BKT and BPKT powders were obtained after calcination at 800 °C for 3 h. After sintering at 1050 °C for 5 h, pure BKT and BPKT pellets were obtained for x = 0 and 0.01. However, for BPKT with x = 0.03, 0.05, 0.10, 0.15 and 0.20, a minor amount of Bi4Ti3O12 (BIT) secondary phase was present after sintering at 1050 °C for 5 h. The crystallite size and grain size of all the samples followed similar trends, first increasing from x = 0 (undoped BKT) to x = 0.05 and then decreasing above x = 0.05. Among the undoped and doped samples, BPKT with x = 0.05 had the highest dielectric properties (?r = 713.87) due to its large crystallite size (68.66 nm), large grain size (∼435 nm) and high relative density (93.39%).  相似文献   

18.
BaTi0.87Sn0.13O3 (BTS13) nanopowder was prepared by low-temperature aqueous synthesis (LTAS) method. The evolution of the structure and microstructure of the precursor precipitate, heated at temperatures up to 1000 °C was studied by TGA, FT-IR, SEM and XRD techniques. The dried precipitate showed a microstructure consisting of nano-sized grains (∼40 nm) with great tendency to agglomeration. BaTi0.87Sn0.13O3 single phase was obtained at 800 °C. The ceramics prepared from as-obtained BTS13 powders (60-70 nm) show good dielectric and ferroelectric characteristics. The dielectric constant was about 4800 and the dielectric loss (tan δ) was 0.229 at 1 kHz and at the Curie temperature (31 °C). The remanent polarization (Pr) and the coercive field (EC) of Ba0.97Ho0.03TiO3 ceramics, at 1 kHz, were Pr = 13 μC/cm2 and EC = 0.89 kV/cm. The ferroelectric parameters EC and Pr decrease with increasing frequency in the domain 100 Hz to 10 kHz.  相似文献   

19.
Substitutional compounds Cr1−xNixSb2 (0 ≤ x ≤ 0.1) were synthesized, and the effect of Ni substitution on transport and thermoelectric properties of Cr1−xNixSb2 were investigated at the temperatures from 7 to 310 K. The results indicated that the magnitudes of the resistivity and thermopower of Cr1−xNixSb2 decreased greatly with increasing Ni content at low temperatures, owing to an increase in electron concentration caused by Ni substitution for Cr. Experiments also showed that the low-temperature lattice thermal conductivity of Cr1−xNixSb2 decreased substantially with increasing Ni content due to an enhancement of phonon scattering by the increased number of Ni atoms. As a result, the figure of merit, ZT, of lightly doped Cr0.99Ni0.01Sb2 was improved at T > ∼230 K. Specifically, the ZT of Cr0.99Ni0.01Sb2 at 310 K was approximately ∼29% larger than that of CrSb2, indicating that thermoelectric properties of CrSb2 can be improved by an appropriate substitution of Ni for Cr.  相似文献   

20.
Lead-free (1 − x − y)Bi0.5Na0.5TiO3-xBaTiO3-yBi0.5Ag0.5TiO3 (BNT-BT-BAT-x/y, x = 0-0.10, y = 0-0.075) piezoelectric ceramics were synthesized by conventional oxide-mixed method. The microstructure, ferroelectric, and piezoelectric properties of the ceramics were investigated. Results show that a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases of BNT-BT-BAT-x/0.04 ceramics is formed at x = 0.06-0.08. The addition of BAT has no obvious change on the crystal structure of BNT-BT ceramics while it causes the grain size of the ceramics to become more homogenous. Near the MPB, the ceramics with x = 0.06 and y = 0.05-0.06 possess optimum electrical properties: Pr ∼ 42.5 μC/cm2, Ec ∼ 32.0 kV/cm, d33 ∼ 172 pC/N, kp ∼ 32.6%, and kt ∼ 52.6%. The temperature dependences of kp and polarization versus electric hysteresis loops reveal that the depolarization temperature (Td) of BNT-BT-BAT-0.06/y ceramics decreases with increasing y. In addition, the polar and non-polar phases may coexist in the BNT-BT-BAT-x/y ceramics above Td.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号