首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
采用高反射率的Cr/Al/Pd/Au作为LED的p-GaN和n-GaN金属电极,替代低反射率的Cr/Pd/Au电极,减小了金属电极对光的吸收,使入射到高反射率金属电极的光经过反射后增加了出射概率,提高了光萃取效率.通过进一步粗化n-GaN表面,抑制了n-GaN/空气界面的光全反射,提高了光萃取效率.实验结果表明,在350 mA电流下,采用高反射率的Cr/Al/Pd/Au电极的LED相比传统电极LED光输出增加了14.3%;结合n-GaN表面粗化,LED的光输出则增加了35.3%.  相似文献   

2.
GaN-based LEDs with photonic crystal (PhC) patterns on an n- and a p-GaN layer by nano-imprint lithography (NIL) are fabricated and investigated. At a driving current of 20 mA on Transistor Outline (TO)-can package, the light output power of the GaN-based LED with PhC patterns on an n- and a p-GaN layer is enhanced by a factor of 1.30, and the wall-plug efficiency is increased by 24%. In addition, the higher output power of the LED with PhC patterns on the n- and p-GaN layer is due to better crystal quality on n-GaN and higher scattering effect on p-GaN surface using PhC pattern structure.  相似文献   

3.
A p-side-up GaN-based light-emitting diode (LED) on a silicon substrate was designed and fabricated using a combination of omnidirectional reflector (ODR) and double-side textured surface (both p-GaN and undoped-GaN) structures via surface-roughening, laser lift-off (LLO) and wafer-bonding technologies. The reflectivity of the designed ODR can reach 99.1% at a wavelength of 460 nm. The textured surface of top p-GaN was achieved under low temperature (LT) conditions using metalorganic chemical vapor deposition. It was found that the GaN LED with an extra 200-nm-thick LT p-GaN layer exhibits a 50% enhancement in luminance intensity. The luminance efficiency of double-side roughened silicon–ODR–GaN LED with a small chip size of 250 $mu {hbox {m}} times {hbox {500}}~mu$m can be improved from 23.2% to 28.2% at an injection current of 20 mA. For the case of 1 mm $times$ 1 mm in chip size, the saturation behavior of the light output power is not observed when an injection current increased from 20 to 350 mA, where the luminance efficiency at 20 mA can reach 28.9%, demonstrating an enhancement by 46%, as compared with that of the conventional GaN–sapphire LEDs. These enhanced results can be attributed to higher reflectivity from the ODR and multiple chances of light emitted from the active region to escape, as well as a centralizing effect of light along the vertical direction.   相似文献   

4.
We have demonstrated enhanced output power from roughened GaN-based light-emitting diodes (LEDs) by using electrodeless photoelectrochemical etching with a chopped source (ELPEC-CS etching). It was found that the 20-mA output power of the ELPEC-CS treated LED (with roughened surfaces on the top p-type and bottom n-type GaN surface as well as the mesa sidewall) was 1.41 and 2.57 times as high as those LEDs with a roughened p-type GaN surface and a conventional surface, respectively. The light output pattern of the ELPEC-CS treated LED was five times greater than the conventional LED at 0deg which was caused by the roughened GaN surface that improved the light extraction efficiency of the LED  相似文献   

5.
High light-extraction (external quantum efficiency ~40%) 465-nm GaN-based vertical light-emitting diodes (LEDs) employing double diffuse surfaces were fabricated. This novel LED structure includes one top transmitted diffuse surface and another diffuse omnidirectional reflector (ODR) on the bottom of a LED chip. The diffusive ODR consists of a roughened p-type GaN layer, an indium-tin-oxide (ITO) low refractive index layer, and an Al layer. The surface of the p-type GaN-layer was naturally roughened while decreasing the growth temperature to 800 degC. After flip-bonding onto a Si substrate by AuSn eutectic metal and laser lift-off processes to remove the sapphire substrate, an anisotropic etching by dilute potassium hydroxide (KOH) was employed on the N-face n-GaN layer to obtain transmitted diffuse surfaces with hexagonal-cone morphology. The double diffused surfaces LEDs show an enhancement of 56% and 236% in light output power compared to single side diffused surface and conventional LEDs, respectively. The devices also show a low leakage current in the order of magnitude of 10 -8 A at -5 V and a calculated external quantum efficiency of about 40%. The high scattering efficiency of double diffused surfaces could be responsible for the enhancement in the device light output power  相似文献   

6.
陈宇  黄黎蓉  朱珊珊 《半导体学报》2009,30(1):014005-4
本文设计和研究了含有蓝光和黄光两个量子阱有源区的单片集成白光发光二极管(LED)。为了提高黄光在混合光中的比例,我们采用AlxGaN1-x/InyGa1-yN 分布式布拉格反射镜(DBR)构成谐振腔对黄光的提取效率进行加强以增大其出射光功率。模拟结果表明,优化设计的谐振腔LED有利于得到高品质白光出射。  相似文献   

7.
A monolithic white light-emitting diode (LED) with blue and yellow light active regions has been designed and studied. With the AlxGa1-xN/InyGa1-yN distributed Bragg reflector (DBR) resonant-cavity, the extraction efficiency and power of the yellow light are enhanced so that high quality white light can be obtained.  相似文献   

8.
A monolithic white light-emitting diode (LED) with blue and yellow light active regions has been de-signed and studied. With the AlxGa1-xN/InyGa1-yN distributed Bragg reflector (DBR) resonant-cavity, the extraction efficiency and power of the yellow light are enhanced so that high quality white light can be obtained.  相似文献   

9.
Vertical thin-GaN LED was successfully fabricated on the GaN LED epi-layers grown on the patterned-sapphire substrate with the pyramidal pattern by low-temperature Cu/Sn/Ag wafer bonding at 150 °C. An inverted pyramidal pattern formed on the n-GaN surface after the GaN epi-layer was transferred onto Si wafer, which resulted from the pyramidal pattern on the patterned-sapphire substrate. The inverted pyramidal pattern has an equivalent function with roughening the n-GaN surface. With higher inverted pyramidal pattern coverage, the light extraction efficiency can be greatly enhanced. In addition, we found that the 4-fold increase (from 13.6% to 53.8%) in the pyramidal pattern coverage on patterned-sapphire substrate only gives the GaN LED epi-layer about 5.7% enhancement in the internal quantum efficiency.  相似文献   

10.
This investigation describes the development of InGaN-GaN light-emitting diode (LED) with a nano-roughened top p-GaN surface which uses Ni nano-mask and wet etching. The light output of the InGaN-GaN LED with a nano-roughened top p-GaN surface is 1.4 times that of a conventional LED, and wall-plug efficiency is 45% higher. The operating voltage of InGaN-GaN LED was reduced from 3.65 to 3.5 V at 20 mA and the series resistance was reduced by 20%. The light output is increased by the nano-roughening of the top p-GaN surface. The reduction in the series resistance can be attributed to the increase in the contact area of nano-roughened surface.  相似文献   

11.
Preparation of GaN-on-Si based thin-film flip-chip LEDs   总被引:1,自引:1,他引:0  
章少华  封波  孙钱  赵汉民 《半导体学报》2013,34(5):053006-3
GaN based MQW epitaxial layers were grown on Si(111) substrate by MOCVD using AIN as the buffer layer.High light extraction LEDs were prepared by substrate transferring technology in combination with thin-film and flip-chip design.The blue and white 1.1×1.1 mm~2 LED lamps are measured.The optical powers and external quantum efficiency for silicone encapsulated blue lamp are 546 mW,and 50.3%at forward current of 350 mA, while the photometric light output for a white lamp packaged with standard YAG phosphor is 120.1 lm.  相似文献   

12.
An organic/inorganic white-light emitting F8T2 (9,9-dioctylfluorene-co-bithiophene)/GaN heterojunction is reported. The white-light emission is produced by hybridizing the blue light (464 nm) emitted from the GaN MQWs and the yellow/green light (500–650 nm) emitted at the F8T2/p-GaN interface by electroluminescence (EL). The yellow/green light emission in the F8T2 layer is resulted from the carrier accumulation and Frenkel excitons at the F8T2/p-GaN junction interface. It is concluded that the energy barrier and large mobility discrepancy at the F8T2/p-GaN junction interface cause carriers accumulating in the F8T2 side near the F8T2/p-GaN interface. The accumulated carriers at the F8T2/p-GaN interface form Frenkel excitons by Coulombic interaction. Then, the Frenkel excitons recombine to radiate the yellow/green emission in the F8T2 layer. The International Commission on Illumination (CIE) coordinate of the white-light emitted from the present device is at (0.28, 0.30), which is very close to the standard white light (0.33, 0.33).  相似文献   

13.
为确定荧光层形状对大功率白光LED光学性能的影响,对蓝光LED发光晶片激发黄色荧光粉产生白光的荧光涂布工艺进行了研究。分别通过大面积点胶、晶片表面点胶和保形荧光胶涂布工艺制得白光LED样品,利用积分球和角度测试机对白光LED的光学性能进行测试,结果表明,保形荧光层白光LED的色温、光强分布和发光角度等光学性能优于大面积点胶和晶片表面点胶白光LED的光学性能。  相似文献   

14.
The advantages of In Ga N/Ga N light emitting diodes(LEDs) with p-Ga N grown under high pressures are studied.It is shown that the high growth pressure could lead to better electronic properties of p-Ga N layers due to the eliminated compensation effect.The contact resistivity of p-Ga N layers are decreased due to the reduced donor-like defects on the p-Ga N surface.The leakage current is also reduced,which may be induced by the better filling of V-defects with p-Ga N layers grown under high pressures.The LED efficiency thus could be enhanced with high pressure grown p-Ga N layers.  相似文献   

15.
As the blue and yellow lights are complementary colors, a blue InGaN LED chip is coated hy a yellow phosphor film to generate white light based on luminescence conversion mechanism. The emitted light of a blue LED is used as the primary source for exciting fluorescent material such as cerium doped yttrium aluminum garnet with the formula Y3Al2O12 : Ce^3+ (in short: YAG : Ce^3+ ). The matching of the spectrum of the blue LED chips and the YAG : Ce^3+ yellow phosphor is studied to improve the conversion efficiency. The packaging methods and manufacturing processes for high power single chip-white LEDs are introduced. The uniformity of the output white light is investigated. Based on the characteristics of the high power white LEDs, some approaches and processes are suggested to improve the light uniformity when they are fabricated. The effectiveness of those approaches on the improvement of LEDs is discussed in detail and some interesting conclusions are also presented.  相似文献   

16.
白光LED的实现及荧光粉材料的选取   总被引:2,自引:3,他引:2  
主要介绍了目前主流白光LED的封装方法,简述了各种方法的原理及优缺点。重点介绍了蓝光芯片与黄光荧光粉混合实现白光LED的机制。通过测试芯片发射谱、不同荧光粉材料的激发和发射谱,重点研究了蓝色芯片与黄色荧光粉材料的光谱匹配性,讨论了荧光粉材料的选取对器件的电学、光学性能的影响。  相似文献   

17.
An n-side-up AlGaInP-based light-emitting diode (LED) with a triangle-like surface morphology was fabricated using the adhesive layer bonding technique, followed by wet etching to roughen the surface. The light output power of the roughened-surface LED was 1.6 times higher than that of a flat-surface LED at an injection current of 20 mA, i.e., a significant improvement attributed to the ability of the roughened surface to not only reduce the internal reflection between the rear mirror system and the semiconductor-air interface, but also to effectively scatter the light outside the LED device.  相似文献   

18.
In this paper, white light-emitting diodes (LEDs) with air-gap embedded package were proposed and fabricated by a simple method including pulsed spray coating. The lumen efficiency of air-gap embedded LED was enhanced by 8.8% at driving current of 350 mA, compared to conventional remote phosphor white LED. This improvement was due to the enhanced utilization of blue and yellow rays, which were confirmed by pulse current-dependent correlated color temperature (CCT). The utilization efficiency of blue rays was enhanced by 12.4% due to the embedded air-gap layer. The simulation results performed by Monte-Carlo ray tracing method agreed with our experiments, which showed enhancement in lumen efficiency and similar CCT. Finally, the electric field intensity versus different thickness for air-gap and no air-gap embedded white LED was calculated to check the incident blue rays trapped in phosphor layer.  相似文献   

19.
Presents a surface-textured indium-tin-oxide (ITO) transparent ohmic contact layer on p-GaN to increase the optical output of nitride-based light-emitting diodes (LED) without destroying the p-GaN. The surface-textured ITO layer was prepared by lithography and dry etching, and dimensions of the regular pattern were approximately 3 /spl times/ 3 /spl mu/m. The operating voltage of the surface-textured LED was almost the same as that of the typical planar LED since the ITO layer was in ohmic contact with the p-GaN. The experimental results indicate that the surface-textured ITO layer is suitable for fabricating high-brightness GaN-based light emitting devices.  相似文献   

20.
The enhancement of light extraction from GaN-based light-emitting diodes (LEDs) with a double 12-fold photonic quasi-crystal (PQC) structure using nanoimprint lithography is presented. At a driving current of 20 mA on a transistor-outline-can package, the light output power of an LED with a nanohole patterned sapphire substrate (NHPSS) and an LED with a double PQC structure are enhanced by 34% and 61%, compared with the conventional LED. In addition, the higher output power of the LED with the double PQC structure is due to better reflectance on NHPSS and higher scattering effect on p-GaN surface using a 12-fold PQC structure pattern. These results provide promising potential to increase the output powers of commercial light-emitting devices.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号