首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
提高烧结NdFeB磁体的耐腐蚀性能一直是该领域研究的热点之一.添加金属元素和涂覆常规镀层虽然有效,但并未很好地解决NdFeB磁体耐腐蚀性差的难题.本文对常规涂层用于烧结NdFeB永磁体防腐蚀的现状进行了分析,提出以化学镀Ni-P镀层为过渡层,采用化学镀/溶胶-凝胶复合法在NdFeB磁体表面形成Ni-P/TiO2复合膜,以提高烧结NdFeB磁体耐蚀性能,拟为研发新型的烧结NdFeB磁体涂层提供参考.  相似文献   

2.
重稀土热扩渗技术在制备高性能、低成本烧结NdFeB磁体领域有重要的应用前景。本研究利用涂覆工艺将DyF3粉末均匀涂覆在M档商业烧结NdFeB磁体表面,获得均匀DyF3涂层,然后进行热扩渗处理。对热扩渗后磁体的性能,微观组织结构及元素分布进行分析,讨论了NdFeB磁体热扩渗工艺对其性能的影响及热扩渗机制。结果表明,本研究磁体的最佳渗Dy工艺为920℃×5h,磁体的矫顽力提高了428A/m,达到1555A/m,剩磁下降很小,磁体达到最佳的综合性能。在扩渗过程中,浓度差提供了扩渗的驱动力,在其驱动下,Dy元素从表面经由晶界向芯部扩散,距磁体表面约689μm范围内,Dy元素扩渗充分且均匀,超过该范围后Dy元素开始出现梯度分布,在本扩渗工艺Dy元素可渗透3mm厚度的磁体。  相似文献   

3.
为了提高烧结NdFeB永磁体的耐蚀性,在铝酸盐溶液中采用二步微弧氧化工艺在烧结NdFeB永磁体表面制备了氧化铝陶瓷涂层。微弧氧化过程中,电压-时间曲线可大致分为4个阶段,与阀金属处理的曲线基本一致。烧结NdFeB表面制备的涂层呈现出典型的微弧氧化多孔形貌,厚度大约为5μm。涂层中仅含有Al_2_O3结晶相,并含有少量的Fe、Nd和P元素。微弧氧化处理后,烧结NdFeB的表面粗糙度有所增加,耐蚀性较基体提高了1个数量级。然而,微弧氧化处理后烧结NdFeB磁体的剩磁和最大磁能积较未处理NdFeB有所下降。  相似文献   

4.
磁性材料的现状与展望   总被引:1,自引:0,他引:1  
1 永久磁体 永久磁体使用在各个领域,其中NdFeB磁体是代表性的稀土类磁体,其最大磁能积高,所以可使装置小型化,高性能化,是目前产量最多的稀土类永久磁体。而铁磁体具有好的性价比,其产量比稀土类磁体还高。相比之下,阿尔尼科等合金类磁体已失去优势,研究也已停滞。目前值得注意的是NdFeB烧结磁体性能的显著提高,氢化-歧化-脱氢-合成法(HDDR)、纳米组成磁体等粘结磁体的飞速发展,用镧、锌及钴置换的高性能铁磁体等。 NdFeB系烧结磁体 NdFeB系烧结磁体具有富钕相的组成,析出的富钕相可促进烧结,除去主相(Nd2Fe14B)表面…  相似文献   

5.
为了提高烧结NdFeB永磁体的耐蚀性,本文在铝酸盐溶液中采用二步微弧氧化工艺在烧结NdFeB永磁体表面制备了氧化铝陶瓷涂层。微弧氧化过程中,电压-时间曲线可大致分为四个阶段,与阀金属处理的曲线基本一致。烧结NdFeB表面制备的涂层呈现出典型的微弧氧化多孔形貌,厚度大约为5 μm。涂层中仅含有Al2O3结晶相,并含有少量的Fe、Nd和P元素。微弧氧化处理后,烧结NdFeB的表面粗糙度有所增加,耐蚀性较基体提高了1个数量级。然后,微弧氧化处理后,烧结NdFeB磁体的剩磁和最大磁能积较未处理NdFeB有所下降。  相似文献   

6.
烧结型NdFeB永磁体的防腐蚀研究进展   总被引:4,自引:3,他引:1  
袁庆龙  曹晶晶  苏志俊 《表面技术》2009,38(1):76-78,85
近年来对烧结型NdFeB永磁材料表面防护层的研究不断取得进步.概括了NdFeB的成分和相结构,系统地介绍了NdFeB永磁体防腐蚀方法,主要包括改善磁体本身性能和对磁体进行表面处理2种方法.综合分析可知:目前的表面防护措施主要存在2点不足之处,即涂层工艺操作复杂,成本高;涂层的耐腐蚀性、厚度、均匀性及结合力仍达不到预期要求.最后,针对不足,我们提出可从改善前处理工艺和开发新的涂镀工艺入手,从而获得满足生产要求的镀层性能.  相似文献   

7.
前处理工艺对NdFeB表面真空蒸镀Al薄膜结构及性能的影响   总被引:1,自引:1,他引:0  
为了开发烧结钕铁硼磁体表面低损伤、环境友好型镀膜前处理工艺,在分别采用抛光、酸洗(50 s)、吹砂、吹砂+酸洗(5 s)4种不同工艺处理的烧结NdFeB磁体表面真空蒸镀Al薄膜。经不同工艺前处理的NdFeB基体和涂层的形貌采用扫描电子显微镜进行观察;采用拉伸试验对Al涂层和基体之间的结合力进行测试;NdFeB基体的自腐蚀行为采用电化学极化曲线进行表征。结果表明:吹砂前处理后NdFeB基体表面存在一层晶粒损伤层,导致镀Al薄膜试样镀层与基体之间的结合力(9.54 MPa)最差。而采用吹砂+酸洗(5 s)前处理后NdFeB表面镀Al试样镀层与基体之间结合力可达13.58 MPa。酸洗(50 s)及喷砂+酸洗(5 s)前处理后基体试样的自腐蚀电流密度基本相同(21μA·cm~(-2)),仅为抛光及喷砂前处理基体试样的20%。在4种工艺当中,吹砂+酸洗(5 s)前处理工艺获得最高的结合力和优异的耐腐蚀性能。  相似文献   

8.
放电等离子烧结(SPS)技术是制备NdFeB合金材料的一种新型工艺方法。本文研究了后热处理工艺对放电等离子烧结制备NdFeB磁体磁性能的影响,同时考察了后热处理工艺对SPS NdFeB磁体微观组织结构和尺寸精度的影响。在适当的后热处理工艺条件下,得到了细晶高性能NdFeB磁体。结果表明可以通过后热处理进一步改善SPS烧结磁体的磁性能,论证了采用SPS技术制备近净成形的细晶高性能NdFeB磁体是完全可行的。  相似文献   

9.
张帅  刘树峰  鲁飞  李慧  刘小鱼 《表面技术》2022,51(12):208-216
目的 采用大气等离子喷涂工艺在烧结NdFeB磁体表面制备Al防护涂层,实现NdFeB磁体防护强化。方法 通过不同喷涂工艺制备Al涂层,采用扫描电子显微镜观测涂层表面、截面形貌和堆积厚度,利用垂直拉拔法测试最佳工艺下涂层的结合强度。喷涂不同厚度Al防护涂层,采用电化学工作站和中性盐雾腐蚀试验研究涂层的耐腐蚀性能,利用脉冲磁场磁强计对比分析喷涂Al涂层厚度对磁体磁性能的影响。结果 喷涂电流从400 A提高至600 A,当喷涂电流为500 A时,涂层表面致密,无明显溅射堆垛和未熔颗粒;喷涂30次,涂层厚度达到40 μm,结合强度达15.5 MPa。等离子喷涂Al防护涂层对NdFeB基体构成牺牲阳极保护,不同厚度涂层的自腐蚀电位无明显差异,约为–1.1 V,自腐蚀电流密度相对NdFeB基体降低了2个数量级。随着涂层厚度的增加,Al防护涂层的耐腐蚀性能逐步提高,喷涂厚度的70 mm的Al防护涂层耐中性盐雾腐蚀时间最高可达300 h以上。随着Al涂层厚度从0 μm增加至70 μm,磁体矫顽力略有提升,剩磁降低为原始样的2.0%~4.26%。结论 等离子喷涂技术可极大改善NdFeB磁体的耐腐蚀性能,为NdFeB防护的工业应用提供了新思路。  相似文献   

10.
烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战   总被引:1,自引:0,他引:1  
烧结NdFeB永磁材料的腐蚀敏感性限制了其在复杂工况下的应用,提高磁体的抗腐蚀能力和开发优异的防护涂层是领域发展的重点方向。尽管针对长寿命NdFeB磁体的探索已经做了大量工作,但是从技术工艺到基础理论,系统地研究NdFeB磁体的腐蚀问题仍然比较少,这一方面是由于材料腐蚀与防护的基础研究滞后于磁性能方面的研究工作,另一方面还与市场对材料品质要求的不断提高及多样化需求有较大关系。本文综述了耐蚀烧结NdFeB永磁材料的最新研究成果,包括影响腐蚀的因素、提高磁体耐蚀性能的基础理论及方法、表面防护战略的基本框架及工程应用中的关键技术;最后,展望了未来前景并分析了面临的挑战,期望为今后的发展指明方向。  相似文献   

11.
研究了Nd2Fe14B单晶、传统烧结NdFeB磁体和放电等离子烧结(简称SPS)NdFeB磁体在电解液溶液中的电化学特性。采用扫描电子显微镜和电子能谱分析了磁体的微观组织成分。结果表明在3.5%NaCI溶液的极化曲线中,Nd2Fe14B单晶具有最高的电化学腐蚀电位,放电等离子烧结NdFeB磁体的腐蚀电位高于传统烧结NdFeB磁体。与传统烧结NdFeB磁体相比,放电等离子烧结NdFeB磁体富Nd相具有独特的分布形态,主相Nd2Fe14B晶粒细小、均匀,富钕相在主相晶粒边界上分布较少,主要集中在三角晶界处。这种组织结构有效地抑制了磁体沿富钕相发生晶间腐蚀的过程,磁体因此具有良好的耐腐蚀性能。此外,从不同稀土含量的烧结NdFeB磁体的高压加速实验中可以看出磁体的腐蚀速度随稀土含量的增加而增大。以上结果表明富Nd相的化学特性及其分布状态和含量是决定合金耐蚀性能的关键,它在合金中以网络状分布在主相晶粒边界上,并决定了烧结NdFeB易于发生选择性晶间腐蚀,从而导致耐蚀性差。  相似文献   

12.
采用晶界扩散工艺制备烧结NdFeB磁体。研究了不同渗材、不同扩散时间对烧结NdFeB磁体性能的影响,研究不同磨削量对扩散镝合金磁体性能的影响。结果表明,镝合金(Dy_(80)Fe_3Al_(10)Cu_4Ga_3)具有较低的熔点,在900℃扩散温度下呈液相,其扩散速度大于氟化物的固相扩散速度。900℃保温5h,晶界扩散镝合金,取向5mm厚N52磁体的矫顽力提升46.28%。距离磁体表面70μm以内可以检测出较高的镝含量,说明在磁体表面存在较薄的高镝浓度区域,该区域磁体具有较高矫顽力,距离表面100μm以外直至磁体芯部,镝含量分布均匀,矫顽力趋于一致。  相似文献   

13.
利用放电等离子烧结技术(SPS)制备新型烧结磁体SPS NdFeB。为了更好理解磁体的磁性能,尤其是矫顽力和微组织关系的机理,本研究以热处理前后的SPS NdFeB为研究对象,利用扫描电镜(SEM)、高分辨透射电镜(HRTEM)、X射线能谱仪,B-H回线仪分别对磁体的显微组织和高分辨透射电镜像组织和磁性能进行了系统研究。结果表明,经过热处理后,磁体矫顽力明显提高,富稀土相的铁原子与稀土原子比Fe/Re明显下降;富稀土相结构形态发生明显变化,由热处理前的非晶态变为热处理后的晶态。  相似文献   

14.
把按成分配比的NdFeB合金在约1500℃下真空熔融,把熔液倾倒到回转的铜辊上(回转速率约为1m/s),使急冷凝固,制得约厚0.3mm,长2cm~3cm的薄片状合金,这种合金的结晶组织比用离心铸造法的要细而薄。磁体的基本磁性能由合金的优劣程度决定,日本厂家所供的高性能NdFeB系烧结磁体就是用薄片铸造(SC)法合金生产的。磁材厂家把这种薄片状合金用超细粉碎机粉碎至3m~4m,在磁场下压制、烧结、表面处理、充磁加工成最终产品。 (吴全兴)NdFeB磁体的薄片铸造法@吴全兴  相似文献   

15.
高耐热性高性能NdFeB磁体开发动向 NdFeB烧结磁体在电动机上使用时,对磁体最重要的要求便是不能发生热退磁.所谓的热退磁是指不可逆的去磁现象,只有进行再充磁才能确保其初始的磁通量.  相似文献   

16.
按照传统烧结Nd-Fe-B永磁体的工艺制得合金Nd33.5Dy1.0Fe63.8Al0.5Cu0.1B1.1,研究了稀土元素Dy以及Al和Cu的添加对永磁体的显微结构及磁性能的影响。结果显示:稀土元素Dy以及Al和Cu能有效的细化晶粒并提高其矫顽力;此外,合理的Dy、Al和Cu含量能获得方形度较好的退磁曲线以及综合磁性能比较好的烧结NdFeB磁体。采用磁力显微镜(MFM)扫描烧结NdFeB试样以表征其表面畴结构,发现Nd2Fe14B的平均晶粒尺寸明显大于磁衬度,这是由于在热退磁状态下,大多数烧结NdFeB磁体的Nd2Fe14B晶粒都是多畴结构。  相似文献   

17.
采用片铸、氢爆碎、气流磨工艺制备烧结NdFeB磁体。研究了富镝辅合金添加对烧结NdFeB磁体性能和微观结构的影响。在一定范围内,随着(PrNd)19Dy23(FeCoCuGa)balB1富镝辅合金添加比例的增加,磁体剩磁下降、矫顽力升高。当镝添加量小于2.3%(质量分数)时,磁体的综合磁性能高于相同成分单合金法制备磁体的性能。当镝添加量大于2.99%(质量分数),与单合金法相比,在同样的烧结温度下,磁体磁能积、密度明显下降。通过适当的提高烧结温度,高镝添加量的磁体密度和磁能积得到提升,仍可获得综合性能高于单合金法制备磁体的性能。  相似文献   

18.
简讯     
《金属功能材料》2012,(5):51-62
稀土永磁材料Dy扩散处理对NdFeB烧结磁体结构的改进作用日本丰田中心研发实验室Yukio Takada等人为了进一步提高NdFeB磁体的矫顽力,研究了Dy扩散处理后NdFeB烧结磁体晶粒尺寸及夹杂物。研究结果表明:作为NdFeB磁体夹杂物的氧,同Dy反应生成Nd-Dy氧化物主要残留于NdFeB晶粒三角结合带。因为Dy一旦氧化就不能起到提高矫顽力的作用,故降低氧  相似文献   

19.
粘结钕铁硼磁体阴极电泳工艺研究   总被引:3,自引:0,他引:3  
粘结NdFeB磁体极易被腐蚀,因而需要涂层保护.本文研究了粘结NdFeB磁体的阴极电泳工艺,主要是电泳电压,电泳时间,电泳时漆液温度以及涂层烘烤固化对涂层抗蚀性的影响.研究发现用合适的工艺参数所获得的涂层能够显著提高粘结NdFeB磁体的抗蚀性能.  相似文献   

20.
基于热变形技术,研究制备了DyF3掺杂热变形NdFeB磁体的微观结构和磁性能。结果表明,通过热变形,磁体获得了具有明显C轴取向特征的扁平形状晶粒,其剩磁从前驱体烧结磁体的0.77 T提高至 1.34 T,提升了近74%。此外,热变形过程起到了晶界扩散的作用,使得DyF3进一步扩散至NdFeB主相之中,形成了(Nd, Dy)2Fe14B相,从而减小了因热变形带来的矫顽力损失。电化学测试表明,热变形过程可提高磁体腐蚀电位和减小电流密度。变形条件800 ℃/70%时,磁体具有最佳的综合磁性能和电化学性能,其磁性能可达:Br=1.34 T,Hcj=1225 kA/m和(BH)max=286 kJ/m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号