首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 224 毫秒
1.
为了提高手机摄像头的装配精度,设计开发一款用于精密装配的小型并联机器人,并对机器人进行标定以及机构误差分析.用数值方法推导机器人的正逆运动学模型和误差模型,并探讨机器人运动学模型和误差补偿模型衔接的问题;设计在桥式三座标测量机上进行测量标定的方法,并对机器人进行标定实验;从机构角度对机器人的间隙误差来源进行分析,分析机器人构型对间隙误差的约束,并对机器人进行重复定位精度测试.经过标定及机构误差控制,机器人位姿坐标的最大位移误差由0.345 9 mm降为0.012 1 mm,最大转角误差由0.007 3 rad降为0.001 1 rad,重复定位精度为0.004 8 mm.实验结果表明该标定方法及机构误差分析方法能有效提高机器人的精度.  相似文献   

2.
自动化装配对于机器人绝对定位精度提出了更高的要求,由于各种误差因素的影响,机器人理论位姿和实际位姿总是存在着一定的误差,若绝对定位精度过低,容易导致装配过程中零部件之间发生碰撞,严重影响着装配机器人的应用与推广。标定技术是提高定位精度的主要手段,误差建模、数据测量、参数辨识是标定与误差补偿过程中的重要环节。为此,提出了一种基于点球约束的机器人误差建模与参数识别方法:1)通过在机器人末端安装的六维力传感器反馈末端受力情况控制机器人以多种姿态使标定锥与靶标球球面重合,记录接触时各关节的位置数据;2)以靶标球球体半径为适应度函数,利用遗传算法辨识误差参数,从而建立完整的误差补偿模型。以自主研制的七自由度装配机器人为研究对象,针对装配机器人的结构特点,由正向递推建立机器人的正运动学方程,应用固定关节法与反变换法获得机器人逆运动学方程;基于D-H模型,建立机器人的运动学误差模型,在理论研究中,预设定误差参数与位姿变换矩阵,通过牛顿迭代法获取了关节变量值,将关节变量值代入正运动学方程进行验证,利用遗传算法进辨识误差参数,将辨识结果代入运动学模型中进行验证,机器人定位精度得到明显提高。通过实验,采用点球式标定方法采集机器人关节数据,应用遗传算法辨识误差参数,将所求得的误差参数代入误差模型中进行实验,绝对定位精度提升了76.74%,验证了基于点球约束的机器人误差建模与参数识别方法的有效性,为多自由度机器人标定研究提供有益参考。  相似文献   

3.
为了提高机器人末端绝对定位精度,提出了基于改进粒子群算法(IPSO)的机器人几何参数标定方法.首先,为避免当机器人相邻两轴线平行或接近平行时,模型存在奇异性,建立了串联机器人MDH模型;其次,针对机器人几何参数标定特点,提出用改进粒子群算法优化标定机器人几何参数,其中粒子初始位置和速度由拟随机Halton序列产生,采用浓缩因子法修改粒子飞行速度,建立了用IPSO标定机器人几何参数目标函数数学模型,确立了用该算法优化标定几何参数的具体步骤.通过对ER10L-C10工业机器人仿真与实测标定,结果证实:采用该方法能够快速标定机器人几何参数,经标定后的机器人末端绝对定位精度有大幅提高.该算法简单,鲁棒性强,易于在工业机器人标定中推广应用.  相似文献   

4.
为了获得准确的机器人运动学参数,提出了一种机器人运动学参数递推标定方法. 基于机器人运动学模型,建立了相邻连杆局部坐标系误差模型,进而提出了从末端连杆坐标系至基坐标系进行运动学参数递推标定的方法. 以八自由度机器人为研究对象,在利用激光跟踪仪建立连杆坐标系的基础上,通过实验验证了运动学参数递推标定方法的有效性和实用性.  相似文献   

5.
冶炼机器人位姿标定及运行可靠性   总被引:1,自引:0,他引:1  
对冶炼用CS-1双擘工业机器人现场使用中的位姿标定及运行可靠性进行了研究。提出了一种简便有效的现场标定计算模型和标定方法对机器人进行位姿标定,由标定变换矩阵补偿同一测点的实际值和计算值的误差,可同时减少机器人定位误差和由臂杆几何参数偏差所引起的运动误差,显著提高需进行连续路径控制的机器人的现场定位精度和位置跟踪精度。此外,提出了用增加机器人现有硬件的冗余功能和设置敏感器件的替代功能以提高机器人现场运行可靠性的方法。实践证明,该方法能提高恶劣环境下易失效部件的可靠度,进而提高机器人的整机使用性能。  相似文献   

6.
基于光轴约束的机械臂运动学标定方法   总被引:1,自引:0,他引:1  
为了提高机械臂的绝对定位精度,本文提出一种基于光轴虚拟约束的运动学参数标定方法。建立基于虚拟直线约束的运动学误差模型;本文在相机光轴的约束下,使用基于图像的视觉控制方法,使机械臂末端标定板的固定特征点依次到达光轴的多个位置;根据运动学模型计算特征点的对齐位置差,并使用迭代最小二乘法求解运动学参数误差。设计了Reinovo六自由度工业机械臂的运动学参数标定实验,对于随机产生的测试点,标定前的平均对齐误差为1. 50 mm,标定后降至0. 72 mm,机械臂末端的定位精度提高了52%,实验结果验证了该方法的有效性。  相似文献   

7.
改进粒子群算法的工业机器人几何参数标定   总被引:1,自引:0,他引:1  
针对传统粒子群(PSO)算法在解决工业机器人几何误差标定问题中存在的收敛速度慢的缺点,提出了一种基于两段式的动态粒子群算法(LDPSO-BT)。用Denavit-Hartenberg方法建立工业机器人的误差模型,将几何误差标定问题转换成对高维非线性方程的求解;对粒子群数目进行线性递减,同时针对算法求解过程中粒子数目线性递减的特点,在改进粒子群算法迭代后期采用改进的搜索模式,对传统粒子群的速度迭代公式进行改进;仿真实验对比了工业机器人几何误差标定前与标定后两种算法的末端定位精度。实验结果表明:在采用粒子群算法辨识工业机器人实际几何参数的过程中,粒子群数目对算法的迭代时间有重要影响,通过线性递减的方式减少粒子群的粒子数目可以有效地减少工业机器人几何误差标定时间,同时在粒子群算法迭代后期采用改进的速度迭代公式可以确保收敛精度。与传统粒子群算法相比,使用改进后的粒子群算法,不仅可以有效减少工业机器人的定位误差,而且还拥有更高效的迭代效率。  相似文献   

8.
为提高工业机器人的定位精度,应用旋量理论,提出了一种分析关节误差源对机器人精度影响的分析方法。该方法通过分析机器臂关节两轴线在不同几何误差作用下的空间位置关系,将关节误差表示成旋量的形式,结合POE公式,给出了包含关节误差的机器人正向运动学显式表达式,并以一个三关节机械臂为例,用Adams仿真验证了该方法的正确性。  相似文献   

9.
MEMS陀螺是导航系统中的关键元器件,提高其精度对提升导航系统性能具有重要意义.基于多体系统建立三轴转台误差模型,根据转台运动机理分析得到三轴转台的各类几何误差项及运动误差项,然后阐述陀螺标定原理,推导出MEMS陀螺标定全参数误差模型,测量出转台各项误差参数值.在此基础上进行速率标定实验,分别求得加入转台误差项参数和不加转台误差项参数时得到的MEMS陀螺误差系数,对比得到两者差值,根据此误差值可以对在不考虑转台误差项参数时得到的MEMS陀螺误差系数进行校正以提高精度.实际工程应用中,可以通过建立MEMS陀螺标定全参数误差模型修正转台误差以提高MEMS陀螺精度,从而提升惯性导航系统性能.  相似文献   

10.
并联机器人误差检测与补偿的三平面法   总被引:2,自引:0,他引:2  
为了提高并联机器人的定位精度,需对其进行误差检测与补偿.该文提出"三平面测量法",在并联机器人运动平台上建立3个近似相互垂直的平面,以三坐标测量机为辅助测量工具,获取这3个平面在某一固定坐标系下的平面方程,从而得到机器人实际位姿.建立6-DOF并联机器人误差方程,结合"三平面测量法"辨识出误差参数,实现并联机器人误差检测、标定及补偿.利用一台具有平行导轨的6-DOF精密并联机器人进行了试验验证.结果表明补偿后机器人期望和实际位姿之间的差别与机器人的重复位姿精度达到同一数量级,较补偿前明显改善.  相似文献   

11.
为了提高6-UPS并联机构的定位精度,研究了一种基于逆运动学的6-UPS并联机构运动学参数辨识方法.首先基于逆运动学建立了6-UPS并联机构的运动学参数辨识模型,然后通过Levenberg-Marquardt最小二乘法对模型进行求解,最后对该算法进行了仿真验证.结果表明该算法可以很快收敛,在测量设备没有测量误差的理想状态下,参数辨识精度达到10-10mm.在测量设备存在1μm、1″的误差状态下,参数辨识精度达到10-3mm,足以满足大部分应用场合下6-UPS的位姿精度要求.  相似文献   

12.
并联机器人中的约束链处于从动地位,由约束链产生的误差很难消除,直接影响到整个机构的运动精度,研究约束链误差对并联机器人整体误差的影响具有重要意义。以设计的三轴联动平台为例,分析了具有平行机构约束链的机构误差问题,建立了平行机构约束链误差数学模型。通过实例分析可以看到,具有平行机构的约束链转角误差和杆长对终端误差影响较大,误差是随交角变化的函数,由此可以找到误差最小的姿态。  相似文献   

13.
基于平面约束的工业机械臂闭环标定,拟合平面与实际约束平面之间存在一定偏差,直接影响标定精度.针对此问题提出消除偏差的方法及误差模型.建立平面坐标系,得到约束平面的准确方程,通过接触式测量头对约束平面进行测量,在平面坐标系中描述测量点的位置;建立最小完整连续运动学模型,从而减少冗余参数的影响;利用双目视觉定位约束平面并规划理论测量点位置,实现自动化测量;通过改进的最小二乘法对参数误差进行辨识.实验结果表明,修正运动学参数后,机械臂绝对位置精度由1.234 mm提高到0.405 mm.该方法成本低、精度高、效率高,且简化了误差模型,适用于工业机械臂的现场标定,为机械臂生产厂家实现批量化标定及后期设备维护提供了思路.  相似文献   

14.
针对工业机器人在压脚压紧力作用下由于结构变形所引起的压脚沿工件表面滑移的问题,提出压脚约束下的机器人刚度模型,并基于该模型对机器人变形进行预测和补偿,以提高机器人制孔的定位精度. 基于改进的Denavit-Hartenberg方法建立机器人运动学模型;在此基础上,通过研究机器人末端平移变形与压脚压紧力之间的相互耦合关系,建立压脚约束下的机器人刚度模型,通过基于L-M算法的关节刚度辨识实验获得机器人6个关节刚度的具体数值;应用该刚度模型预测一定压脚压紧力作用下不同孔位的机器人末端平移变形,并对理论孔位信息进行离线补偿. 试验结果表明,在采用上述方法补偿机器人滑移变形后,机器人制孔的平均位置误差由原先的0.22 mm降低到0.05 mm,满足机器人自动化制孔定位精度要求.  相似文献   

15.
Stewartinitialedasixdegrees of freedomparallelmanipulatorin1965.“Stewart platform”,aparallelmanipulator,isdefinedasarobotconsistingofatleasttwomainrigidbodieslinkedbymorethanonekinemat icschain.Theadvantages[1]ofparallelmanipulatorcomparedtoserialoneare…  相似文献   

16.
超短基线由于其小尺寸和使用方便而被广泛应用于海洋开发中.超短基线在安装时无法保证其声学换能器基阵的方位系统与载体的方位系统完全重合,从而引入了系统的安装误差.对高精度定位而言,该误差是不容忽略的.利用锚于水底的声学应答器地理位置不随洋流及测量载体的变化而变化的特点,借助外接的高精度GPS和姿态传感器的信息用最小二乘的方法对其安装误差进行校准.理论分析和试验结果证明,该方法有效地解决了安装误差问题,海试结果表明经过安装误差校准后系统的定位精度可达到斜距的5‰,满足系统要求.  相似文献   

17.
This paper presents a novel step kinematic calibration method for a 3 degree-of-freedom (DOF) planar parallel kinematic machine tool, based on the minimal linear combinations (MLCs) of error parameters. The method using mapping of linear combinations of parameters in error transfer multi-parameters coupling system changes the modeling, identification and error compensation of geometric parameters in the general kinematic calibration into those of linear combinations of parameters. By using the four theorems of the MLCs, the sets of the MLCs that are respectively related to the relative precision and absolute precision are determined. All simple and feasible measurement methods in practice are given, and identification analysis of the set of the MLCs for each measurement is carried out. According to the identification analysis results, a step calibration including step measurement, step identification and step error compensation is determined by taking into account both measurement costs and observability. The experiment shows that the proposed method has the following merits: (1) the parameter errors that cannot influence precision are completely avoided; (2) it reflects the mapping of linear combinations of parameters more accurately and enhances the precision of identification; and (3) the method is robust, efficient and effective, so that the errors in position and orientation are kept at the same order of the measurement noise. Due to these merits, the present method is attractive for the 3-DOF planar parallel kinematic machine tool and can be also applied to other parallel kinematic machine tools with weakly nonlinear kinematics. Supported by the “863” High-Tech Program of China (Grant Nos. 2006AA04Z204 and 2006AA04Z227), National Natural Science Foundation of China (Grant Nos. 50775118 and 50605041), the “973” Basic Research Project of China (Grant Nos. 2006CB705406 and 2007CB714000), and Tsinghua Basic Research Foundation (Grant No. JC200701)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号