首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a culture of Aspergillus oryzae MK-107-39 in a 3-l airlift bioreactor, kojic acid was not produced when glucose/wheat germ medium (GM1) was used. However, when a jar fermentor was used, the kojic acid yield was high. A suitable medium for culture in an airlift bioreactor consisting of partially hydrolyzed corn starch and a small amount of corn steep liquor (CSL) (SM1) was selected. In the cultivation in the airlift bioreactor using SM1, nearly 40 g/l of kojic acid was produced, which was the same as the amount produced in the jar fermentor containing GM1. The optimum aeration rate for the airlift bioreactor was 2.0 vvm (0.66 cm/s of superficial linear velocity (Vs)). The cost of SM1 using the airlift bioreactor was reduced to 40% that of GM1 using the jar fermentor. Furthermore, the energy cost of kojic acid production using SM1 in the airlift bioreactor was less than one-fourth of that for the jar fermentor using GM1.  相似文献   

2.
We determined the optimum culture conditions such as inoculum size, initial starch concentration, pH during the fermentation and aeration rate for L-lactic acid production by Rhizopus sp. MK-96-1196 in a 3-l airlift bioreactor. More than 90 g/l of L-lactic acid was produced from only partially enzymatically hydrolyzed corn starch with a production rate of 2.6 g/l/h and a product yield of 87% based on the starch consumed under the optimum conditions in the 3-l airlift bioreactor. Scale-up from the 3-l to a 100-l airlift bioreactor for L-lactic acid fermentation was carried out using V(s)(cm/s) as a scale-up criterion. The production rates and yields of L-lactic acid in both bioreactors appeared to be fairly well correlated with k(L)a (1/h).  相似文献   

3.
This paper describes the development of a continuous acetic acid fermentation process for the production of wine vinegar in bubble column reactors of up to 60 l capacity. To determine appropriate fermentation conditions a study of the influence of residual ethanol concentration, inlet flow rate and aeration was carried out using a 6-l laboratory reactor, white table wine as fermentation medium, a temperature of 30 °C and an air flow rate of 0.125 min-1 (vvm). The concentration of acetic acid obtained in the continuous wine vinegar production ranged from 91 g/l at 28.6 ml/h to 28 g/l at 154.1 ml/h by increasing the inlet flow rate. As expected, the biomass decreased as well, from 208 mg/l to 106 mg/l. The maximum acetification rate was observed in the range 85-110 ml/h, corresponding to a value of about 1.1 g/l/h. A further increase in the flow rate produced a slight decrease in the acetification rate. Best yields, between 94.5 and 94.7%, were obtained in the flow rate range of 60-75 ml/h. The acetification rate was improved only by about 10% by increasing the aeration from 0.125 to 0.250 min-1. The continuous wine vinegar production was scaled up from the laboratory fermentor to a 60-l pilot acetator. During the steady state (residential time >6), with an inlet flow rate of 950 ml/h, temperature of 30 °C and aeration of 0.250 min-1, the following parameters were obtained: acetic acid concentration 72 g/l, overall productivity 1.41 g/l/h and yield 94.2%.  相似文献   

4.
This is the first study showing the successful application of waste house wood (WHW) to the pilot-scale production of bioethanol by hydrolysis using diluted acid and fermentation using the ethanologenic recombinant Escherichia coli KO11. The major sugars in the WHW hydrolysate were glucose, mannose and xylose; the percentages were approximately 35%, 35% and 20% (w/w), respectively. In anaerobic fermentation using a 5-l reactor in which the oxygen transfer rate (OTR) was 0 mmol/(l x h), KO11 consumed only 25% of the xylose in the WHW hydrolysate over the examined fermentation time of 100 h; however, hexoses such as glucose and mannose were consumed completely. Microaeration at an OTR of 4 mmol/(l x h) enhanced the xylose utilization ratio of KO11 to 100%, at which the ethanol concentration was 35.4 g/l and the ethanol yield was 0.42, although the maximum ethanol concentrations were 28.8 and 26.6 g/l at OTRs of 0 mmol/(l x h) and 15 mmol/(l x h), respectively. Moreover, this microaerobic fermentation at OTR of 4 mmol/(l x h) was applied to 1000-l scale bioethanol production using the WHW hydrolysate. The xylose utilization ratio reached 100% and the ethanol yield was determined to be 0.45 for a 63-h fermentation, which were comparable to those obtained from the laboratory-scale fermentation.  相似文献   

5.
The effect of nonionic surfactants on gellan production by Sphingomonas paucimobilis was studied by the addition of 0.5, 0.75, 1.0, 1.25 and 1.5 g/l surfactants to shake flask culture. The nonionic surfactants Tween 80, Tween 40 and Triton X-100 improved gellan production by S. paucimobilis, and the maximum yield (10.44 g/l) was obtained with Triton X-100 at 0.75 g/l compared with that of the control fermentation (8.63 g/l) without surfactant. The DO profiles associated with gellan production in a 5-l laboratory fermentor showed higher oxygen and mass transfers during fermentation with surfactant than during control fermentation without surfactant. The addition of surfactant also resulted in a polymer with high viscosity as manifested by its lower acetyl content, than that obtained by control fermentation. A central composite design (CCD) was used to determine the maximum gellan production at optimum values for three process parameters (Triton X-100 concentration, pH, and temperature) each at five levels in a laboratory fermentor. The maximum gellan yield (14.62 g/l) was obtained in a 5-l laboratory fermentor with 1.0 g/l Triton X-100 and at pH 6.0 and temperature 29.6 degrees C. Further studies on the effects of agitation and DOT level demonstrated that the surfactants enhanced oxygen transfer resulting in higher gellan production (27.86 g/l) at higher agitation speed (1000 rpm) and 100% DOT level.  相似文献   

6.
米根霉不同菌丝体形态对重复间歇发酵生产L-乳酸的影响   总被引:1,自引:0,他引:1  
研究米根霉在3L 发酵罐重复间歇发酵过程中,菌体形态对发酵强度的影响。结果表明:絮状米根霉首批发酵产L- 乳酸为105.8g/L,葡萄糖转化率88.12%,球状米根霉产L- 乳酸105.0g/L,葡萄糖转化率87.50%;在重复间歇发酵过程中,球状米根霉前6 批产L- 乳酸均保持在80.00g/L 以上,第7 批产L- 乳酸78.60g/L,葡萄糖转化率均高于87.33%,产酸效率最高可达到4.26g/(L·h),而絮状米根霉前4 批产L- 乳酸可保持在80.00g/L 以上,第5 批产L- 乳酸78.30g/L,第6 批产L- 乳酸77.40g/L,第7 批产L- 乳酸70.20g/L,产酸效率最高可达4.07g/(L·h)。研究数据显示,球状米根霉更适于重复间歇发酵生产L- 乳酸。  相似文献   

7.
本文采用复旦大学与常州味精厂共同选育的FM 84—415菌株,在35吨发酵罐中进行了一次性高糖发酵和代谢控制的研究;当初糖浓度为17.94%时,连续5罐的平均产酸率为8.23%,转化率为47.36%;当初糖浓度为19.16%时,连续五罐的平均产酸率为8.65%,转化率为50.02%。 上述结果达到高糖发酵的较高水平,同时在研究过程中还摸索了发酵规律,提出了高糖发酵的代谢控制要点,其工艺控制适合我国的实际情况,便于推广使用,我们认为本文结果将有助于探索谷氨酸一次性水解糖的高糖发酵的新技术途径。  相似文献   

8.
根霉发酵L-乳酸   总被引:21,自引:1,他引:21  
本文报道了选育一株产L-乳酸的根霉JSMI-R73,对该菌的性能及影响产酸的条件进行了研究,并进行了500升罐的扩大试验。当口服葡萄糖浓度为10%时产酸70g/l以上,13%时产酸101g/l,其中L-乳酸稳定在85%以上,最高达98%。该菌能适应玉米作培养基,当玉米浓度为12%时产酸70g/l以上,20%时产酸105g/l以上,其中L-乳酸在88%以上,最高可达99%,达到了与葡萄糖相似的发酵水平,这是较有实用意义的结果。  相似文献   

9.
Production of L-lactic acid from corncob   总被引:9,自引:0,他引:9  
The optimum temperature, initial pH, amount of added enzyme and substrate (corncob) for the hydrolysis of corncob by Acremonium cellulase were 35 degrees C, 4.5, 10 u/g-corncob and 100 g/l, respectively. Under the optimum conditions, more than 55 g/l of reducing sugars were hydrolyzed from 100 g/l of corncob to 34 g/l of glucose and 12 g/l of xylose based on dried corncob. More than 25 g/l of L-lactic acid was produced from this enzymatic hydrolyzate and less than 5 g/l of xylose remained in the 3-l airlift bioreactor. The production of L-lactic acid by simultaneous saccharification and fermentation (SSF) was also carried out in the 3-l airlift bioreactor using Acremonium thermophilus (cellulose-producer) and Rhizopus sp. MK-96-1196 (lactic acid-producer). More than 24 g/l of L-lactic acid was produced from 100 g/l of untreated raw corncob.  相似文献   

10.
An efficient method for the isolation of pyruvate-producing mutants of Torulopsis glabrata IFO 0005 was established. On mutagenesis of the parent strain, mutants requiring polypeptone for complete growth were isolated. Seven mutants among one hundred auxotrophs produced higher concentrations of pyruvate than the parent strain. Among them, arginine (L-Arg) auxotrophic mutants and an isoleucine (L-Ile) and valine (L-Val) double auxotrophic mutant exhibited higher fermentative production of pyruvate from glucose than the parent strain. T. glabrata X-15 and X-17 required L-Arg for complete growth. T. glabrata X-68 absolutely required L-Ile and L-Val for complete growth. These three strains (X-15, X-17 and X-68) have more than 10% higher yields of pyruvate than the parent strain. Among them, the best strain regarding pyruvate productivity, T. glabrata X-15, accumulated 59.5 g/l free pyruvic acid (yield, 60.1%; conversion to pyruvic acid of added glucose in 43 h) on a 3-l jar-fermentor scale. This yield with strain X-15 represented a 12% increase compared to that obtained with the parent strain.  相似文献   

11.
An efficient method for isolation of pyruvate-producing mutants of Torulopsis glabrata IFO 0005 was established. On mutagenesis of the parent strain, mutants requiring acetate for complete growth were isolated. The acetate-leaky auxotrophic mutants demonstrated higher fermentative yields of pyruvate from glucose than the parent strain. Thus, the pyruvate decarboxylase (PDC) activity of mutants requiring acetate for complete growth was lower than that of the parent strain. A decrease in the PDC activity would therefore block the formation of acetate via acetaldehyde and thus increase pyruvate production. Among the mutants, T. glabrata ACII-33 had accumulated free pyruvic acid (60.3 g/l) in 47 h (yield, 67.3%; conversion of pyruvic acid from glucose consumed) in a 3 l jar-fermentor. This yield by strain ACII-33 represented at 15% increase compared to that with the parent strain.  相似文献   

12.
以氨水为中和剂,替代CaCO3,对耐氨米根霉R.oryzaeJS-N0-2-02进行15L自动发酵罐的分批和分批补料发酵及其发酵动力学的初步研究,结果表明,降低起始糖浓度,产酸期补糖可明显提高菌体L-乳酸比生产速率和耗糖产酸能力,提高L-乳酸产量和纯度,降低残糖。在发酵起始时添加1 g/L CaCO3能进一步提高补糖发酵的L-乳酸比生产速率,增强发酵后期菌体耗糖产酸能力,从而进一步提高L-乳酸产量和纯度,降低残糖。发酵结果:起始糖浓度为120 g/L,25h时补糖使最终发酵总糖浓度达137 g/L,发酵培养60 h,L-乳酸产量可达101.8 g/L,纯度97.3%,菌体耗糖转化率76%,比生产速率0.27 g/g.h,残糖降至3 g/L。  相似文献   

13.
从辣白菜样品中筛选出1 株高产乳酸的菌株LB-103,经L-/D-乳酸试剂盒检测该菌株发酵产L-乳酸的光学纯度为100%。通过形态学观察、VITEK 2生理生化鉴定和16S rDNA序列分析,确定该菌株为鼠李糖乳酸杆菌(Lactobacillus rhamnosus),将其命名为鼠李糖乳酸杆菌DLF-15038。对其发酵培养基进行初步优化,发现廉价的棉籽饼粉可以部分替代酵母粉,采用15?g/L棉籽饼粉和10?g/L的酵母粉为复合氮源,L-乳酸的产量得以维持且明显降低成本,最适无机盐质量浓度分别为CH3COONa?3?g/L、KH2PO4?2?g/L、MnSO4?0.3?g/L、MgSO4?0.2?g/L。在该优化条件下,进行了5?L发酵罐中的批式流加发酵实验,发酵72?h,L-乳酸产量为165.15?g/L,生产强度为2.29?g/(L·h),糖酸转化率为93.34%。  相似文献   

14.
二次接种叠加生物素的谷氨酸发酵工艺研究   总被引:2,自引:0,他引:2  
由于受到发酵罐溶氧条件的限制,在高浓度生物素的谷氨酸发酵中往往出现产酸与糖酸转化率不协调的现象,针对这一现象,研究了二次接种叠加生物素的谷氨酸发酵工艺。在试验所用的发酵罐中,采用8.0μg/L生物素浓度的培养基作为发酵基础培养,经过一段时间发酵后,接入第二次种子液以及3.0μg/L(发酵液初始体积)的生物素量,通过适当的发酵控制,产酸水平达到139.6g/L,糖酸转化率高达62.80%,单罐谷氨酸产量比一次接种添加8.0μg/L生物素的发酵工艺提高了15.78%。  相似文献   

15.
在L-乳酸发酵生产中,用廉价的黄豆粉补充微量维生素液,替代培养基中昂贵的酵母粉,L-乳酸的产物浓度和得率与使用酵母粉相比相差不大。氮源经优化后,使用3.5%~4.5%的黄豆粉并添加最优剂量的8种维生素混合液,摇瓶实验,120 g/L葡萄糖转化得到104 g/L的L-乳酸,得率为86.7%;5 L发酵罐实验,3.5%的黄豆粉补充维生素混合液,初始葡萄糖浓度150 g/L,L-乳酸浓度为128 g/L,得率达到85.3%,基本达到了以酵母粉做氮源和生长因子的发酵指标。  相似文献   

16.
Fermentation products of Aspergillus terreus ATCC 20542 (a parent strain for lovastatin production) were collected, and the coexistence of itaconic acid (IA) with lovastatin was confirmed in this study. Using a lactose-based medium (LBM), lovastatin production was 873 mg/l on day 10, but IA production was only 22-28 mg/l during the cultures. When lactose in LBM was simply replaced with glucose, IA production was markedly enhanced by 20-fold (491 mg/l on day 5), which showed a growth-associated pattern. The findings indicated that the carbon source used (glucose or lactose) controlled the biosynthetic pathway. The net yield of lovastatin production when using lactose was calculated to be 25.1 mg/g (5.1-fold) in comparison with when using glucose in the cultures. Furthermore, lovastatin production was further increased by 9.2% when IA (0.5 g/l) was added to LBM. When IA was added at 5 g/l, the fermentation broth turned dark-brown, and lovastatin production was reduced by 18.0%. Hence, these two metabolites (IA and lovastatin) produced by the fungus might be related.  相似文献   

17.
碳源对L-苏氨酸发酵的影响   总被引:4,自引:1,他引:4  
以L-苏氨酸生产菌TRFC为供试菌株,研究了碳源对L-苏氨酸发酵的产量和糖酸转化率的影响。采用补料分批发酵工艺生产L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量。确定了发酵的最佳碳源及其补料方式,通过10L罐补料分批发酵36h,产酸可达118.9 g/L,糖酸转化率为47.6%。  相似文献   

18.
对1株黄嘌呤、硫胺素、组氨酸三重缺陷型及8-氮杂鸟嘌呤抗性的腺苷突变株JSIM-X-13-4进行了摇瓶、自控罐3、000 L中型发酵罐试验。试验发现,该菌株培养基成分除酵母膏外,其余与其亲株肌苷产生菌JSIM-1019基本相同。酵母膏浓度为1.6%-1.8%,摇瓶CaCO3量为3%;发酵罐上适宜pH为6.2,风量在18h提高至1∶0.55,溶氧40%。摇瓶、自控罐、中型发酵罐产苷分别为15.51 g/L、18.11 g/L和17.25 g/L。  相似文献   

19.
Acetobacter xylinum BRC5 was cultivated in a jar fermentor using glucose as the sole carbon source. Strain BRC5 oxidized almost all of the glucose to gluconic acid; thereafter, it biosynthesized cellulose by utilizing gluconic acid accumulated in the broth. The optimal pH for metabolizing glucose to gluconic acid was 4.0, while a pH of 5.5 was preferred for cell growth and cellulose production from the accumulated gluconic acid in the medium. Shifting the pH from 4.0 to 5.5 during the cellulose production phase in batch cultures improved cellulose production and reduced the total fermentation time, compared to batch cultures at constant pH. In constant fed-batch culture, 10 g/l of cellulose was obtained from 40 g/l of glucose, a yield which was approximately 2-fold higher than in batch culture with the same initial glucose concentration, even without control of the level of dissolved oxygen. The highest cellulose yield was obtained in fed-batch cultures in which the dissolved oxygen concentration was controlled at 10% saturation. Control of pH and dissolved oxygen to optimal levels was effective for improving the production rate and yield of cellulose, to achieve a high cellulose productivity of 0.3 g cellulose/l x h. Approximately 15 g/l of cellulose was considered to be the highest yield obtainable using conventional fermentors because the culture broth then became too viscous to allow satisfactory aeration.  相似文献   

20.
以米根霉(Rhizopus oryzae)突变株CICC40503-JST为菌种,葡萄糖为碳源,对其发酵工艺及葡萄糖代谢途径进行初步研究,从而提高L-苹果酸的产量。采用单因素试验和响应曲面法(Box-Behnken设计)对培养基和发酵条件进行优化,研究发酵罐实验对产酸的影响。结果获得最佳培养基配方为:葡萄糖100 g/L、(NH4)2SO4 4.0 g/L、MgSO4 0.3 g/L、FeSO4•7H2O 0.025 g/L、KH2PO4 0.5 g/L、ZnSO4 0.1 g/L、CaCO3 80 g/L。发酵条件较好组合为:发酵设备为Sartorius发酵罐、发酵温度32 ℃、通气量0.20 L/(min·L)、转速500 r/min、孢子悬浮液单独培养48 h、发酵进行48 h后添加培养基进行补料发酵,发酵周期为72 h、L-苹果酸的产量为57.71 g/L。结论:米根霉能够较好地利用葡萄糖发酵产L-苹果酸,其产量得到明显提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号