首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以硝基胍和甲醛为原料,经缩合反应、硝化反应和肼解反应得到总收率为63.69%的3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT),并对其进行了表征了结构。测试了HDNAT的部分物化、爆轰性能。结果为:密度1.89 g·cm-3,熔点194~196℃,摩擦感度92%,撞击感度100%,H5026.8cm,爆速9000 m·s-1(ρ=1.80 g·cm-3).采用VLM method计算其爆压为36.0 GPa。  相似文献   

2.
以硝基胍和甲醛为原料,经缩合反应、硝化反应、肼解反应和复分解反应,合成了3,5-二硝氨基-1,2,4-三唑铅盐,采用DSC和TG-DTG方法分析了其热性能,并测试了真空安定性、吸湿性、相容性、感度性能、5s爆发点、爆热、爆速等物化性质和爆轰性能。结果表明:3,5-二硝氨基-1,2,4-三唑铅盐的热稳定性、真空安定性以及耐吸湿性良好,与RDX、HMX、太安、特屈儿、铁、铝、铜等材料均相容,撞击感度和摩擦感度较叠氮化铅(LA)和斯蒂芬酸铅(LTNR)钝感,5s爆发点为226~228℃,爆热为2 236J·g~(-1),爆速为5 755 m·s~(-1),有望作为LA和LTNR的替代物使用。  相似文献   

3.
程志伟  胡炳成 《含能材料》2018,26(4):359-363
以二硝基甘胍为原料,二苯基次膦酰羟胺(Dpp ONH2)为胺化试剂,经脱氢、胺化两步反应得到一种新型高能量密度化合物2,6-二氨基-3,7-二硝亚胺基-2,4,6,8-四氮杂双环[3.3.0]辛烷(二氨基二硝基甘胍)。采用红外光谱(FTIR)、核磁(NMR)、质谱(MS)对目标结构进行了表征。研究了影响二氨基二硝基甘胍产率的因素,并通过正交试验确定了各个因素对目标产物影响的大小,确定了在Dpp ONH_2/MeCN胺化体系下,反应时间为48 h、温度为40℃、Dpp ONH2与二硝基甘胍钠盐的摩尔比为3∶1时二氨基二硝基甘胍的产率最高,为35.07%。运用Gaussian 03程序包,采用密度泛函理论(DFT)的B3LYP/6-31++G(d,p)方法,对其结构优化,并基于其优化结构,对该化合物的爆轰性能进行预测。用Monte-Carlo方法求得该化合物的理论密度为1.73 g·cm~(-3);设计等键等电子反应得到其标准摩尔生成热为416.09 k J·mol~(-1);Kamlet-Jacobs公式计算得到该化合物爆速为8.90 km·s~(-1),爆压为34.27GPa。理论计算结果说明该化合物密度、爆压、爆速均与RDX接近。  相似文献   

4.
易潜洪  黄明  谭碧生  贺云  屈延阳  刘玉存 《含能材料》2015,23(11):1095-1098
以5-氨基-3-硝基-1,2,4-三唑(ANTA)和1-氨基-3,5-二硝基-1,2,4-三唑(ADNT)为原料,设计、合成了一种新型C—N互联三唑化合物1-氨基-3-硝基-5-(5-氨基-3-硝基-1,2,4-三唑-1-基)-1,2,4-三唑(DANBT),采用IR、NMR、MS对其结构进行了表征,用差示扫描量热法研究了DANBT的热性能,确定了其熔点为221.8℃,分解峰温为291.8℃,热稳定性优于ADNT和ANTA。采用Kamlet-Jacobs方程预测DANBT的爆速与爆压分别为8.69 km·s-1,33.91 GPa。  相似文献   

5.
3,5-二硝氨基-1,2,4-三唑肼盐的合成及性能(英)   总被引:2,自引:2,他引:0  
周诚  王伯周  霍欢  周群  杨威  叶志虎 《含能材料》2014,22(4):576-578
以硝基胍和甲醛为原料,经缩合反应、硝化反应和肼解反应得到总收率为63.69%的3,5-二硝氨基-1,2,4-三唑肼盐(HDNAT),并对其进行了表征了结构。测试了HDNAT的部分物化、爆轰性能。结果为: 密度1.89 g·cm-3,熔点194~196 ℃,摩擦感度92%,撞击感度100%,H50 26.8cm,爆速9000 m·s-1 (ρ=1.80 g·cm-3).采用VLM method计算其爆压为36.0 GPa。  相似文献   

6.
以1,1'-二羟基-3,3'-二硝基-5,5'-联-1,2,4-三唑(DNOBT)为原料,分别与3-氨基-1,2,4-三唑、草酰肼、二肼基四嗪反应合成了DNOBT的3-氨基-1,2,4-三唑盐(DNOBT-3-AT)、草酰肼盐(DNOBT-ODH)、二肼基四嗪盐(DNOBT-DHT)三种含能离子盐,用红外光谱、核磁及元素分析对其结构进行了表征;培养了DNOBT-3-AT的单晶,X射线衍射分析表明其晶体为单斜晶系,空间群为P2(1)/c;利用Gaussian 09程序和Kamlet-Jacobs方程计算了DNOBT-3-AT、DNOBT-ODH、DNOBT-DHT的物化与爆轰性能,采用差示扫描量热(DSC)研究了这三种化合物的热性能,结果表明,DNOBT-3-AT、DNOBT-ODH、DNOBT-DHT爆速分别为7736.4,7729.56,7974.64 m·s~(-1),爆压分别为26.8,26.74,28.56 GPa;第一个热分解峰温度分别为276.54,257.02,154.15℃,相较于DNOBT-ODH和DNOBT-DHT,DNOBT-3-AT具有更好的热稳定性。  相似文献   

7.
3-硝基-1,2,4-三唑-5-酮脒基脲盐的合成与表征   总被引:1,自引:1,他引:0  
为了克服3-硝基-1,2,4-三唑-5-酮(NTO)的酸性,设计了新的含能离子化合物3-硝基-1,2,4-三唑-5-酮脒基脲盐(GUNTO),以NTO和脒基脲盐酸盐为原料,采用一锅法和分步法两种方法合成了GUNTO,收率均高于85%。用红外光谱、核磁共振、质谱、元素分析和X-射线单晶衍射表征了它的结构。研究了GUNTO的物化性质与爆轰性能。借助晶体密度1.72 g·cm-3和理论计算的生成焓-347.35 kJ·mol-1,运用Kamlet公式预估爆速为6683.49 m·s-1、爆压为19.27 GPa。实测撞击感度、摩擦感度均为0%,特性落高H50大于125.8 cm,10℃·min-1时DSC曲线的峰温为236.8℃。与其他NTO胺盐相比,GUNTO氮含量较高、热稳定性好、感度低。  相似文献   

8.
以1,4-丁二酸二酰肼为原料,采用"MNNG合环法"一锅直接合成了1,2-二(3,3′-二硝氨基-1H-1,2,4-三唑-5-基)乙烷一水合物(1),研究了化合物1的较优合成工艺.通过化合物1与1,3-丙二胺反应得到了1,2-二(3,3′-二硝氨基-1H-1,2,4-三唑-5-基)乙烷-1,3-丙二铵盐(2),通过X射线单晶衍射分析获得了化合物2的单晶结构.采用红外光谱、核磁以及元素分析对化合物1和2结构进行了表征;利用差示扫描量热法分析了热性能,结果表明1和2的起始热分解温度分别为184℃和214℃;利用EXPLO5(v6.02)软件模拟计算了化合物1和2的主要爆轰参数,其中化合物1的理论爆速为8602 m·s-1,理论爆压为28.10 GPa,化合物2的理论爆速为7740 m·s-1,理论爆压为19.10 GPa;利用BAM感度测试仪进行感度测试,化合物1的撞击感度为35 J,摩擦感度为108 N,化合物2的撞击感度大于40 J,摩擦感度大于360 N.  相似文献   

9.
王霆威  李燕  陈东  张祺  朱顺官 《含能材料》2019,27(12):1031-1035
以3-氨基-1H-1,2,4-三氮唑-5羧酸为原料首次合成不对称结构的联三唑类富氮含能化合物3-氨基-3′-硝胺基-5,5′-联-1H-1,2,4-三唑(3),并通过红外,核磁,质谱等表征产物结构。采用差示扫描量热─热重分析联用法研究了其热稳定性和分解历程。结果表明,化合物3的分解温度达到160℃;利用氧弹量热仪测得标准摩尔燃烧焓Δ_CH_m~θ为-1952.25 kJ·mol~(-1),根据Hess定律计算得标准摩尔生成焓Δ_fH_m~θ=-336.245 kJ·mol-1,采用粉末密度仪测得粉末密度为1.6137 g·cm~(-3),用EXPLO 5程序预测爆压为9.6 GPa,爆速为5745.5 m·s~(-1),撞击感度为80 J,摩擦感度为360 N,表明该物质是一种新型不敏感含能材料。  相似文献   

10.
以5,5′?二硝胺基?2,2′?联?1,3,4?噁二唑为原料合成了一系列含能盐,采用了红外(FT?IR))、核磁(NMR)和元素分析进行了结构表征。并用X?射线单晶衍射进一步确定了3?氨基?1,2,4?三唑盐(9·2H_2O)和4?氨基?1,2,4?三唑盐(10)的结构,用差热扫描法(DSC)测定了它们的热分解温度,用Explos 5 v6.02计算了它们的爆轰性能。结果表明它们的热分解温度范围为146.8~239.9℃;计算爆速高于7693 m·s~(-1),爆压高于21.3 GPa;密度介于1.683~1.941 g·cm~(-3),实测撞击感度介于10~28 J,摩擦感度介于160~360 N,表明5,5′?二硝胺基?2,2′?联?1,3,4?噁二唑类含能盐是一类性能较好的高能量密度材料。  相似文献   

11.
采用Materials Studio软件对磷酸硼(BPO4)和磷酸铝(AlPO4)两种非线性光学晶体建立晶体结构模型,基于密度泛函理论(DFT)量子力学第一性原理方法,利用CASTEP程序模块对两种磷酸盐能带结构、态密度和电子密度差异以及光学性质进行研究。结果表明:AlPO4晶体具有较大倍频系数,优于BPO4晶体;电子密度的差异对两种晶体的物理性质有决定性的影响;在不同频率变化范围,两种晶体光学性质均呈现非线性效应,具有宽的透光范围,对进一步应用其非线性光学性质提供一定的参考。  相似文献   

12.
多孔硅/高氯酸钠复合材料合成与爆炸特性研究   总被引:1,自引:1,他引:0  
采用电化学阳极氧化法制备多孔硅,考察不同阳极氧化条件下多孔硅孔隙率及膜厚变化规律,分析阳极氧化条件、高氯酸钠溶液浓度及多孔硅贮存方法等对多孔硅/高氯酸钠复合材料爆炸特性的影响。结果表明,多孔硅孔隙率随阳极氧化电流密度增加而增大,当电流密度达到50mA.cm-2时趋于稳定,当氢氟酸浓度增加时多孔硅孔隙率反而减小,而阳极氧化时间延长时多孔硅孔隙率呈先增加后减小现象,且氧化时间为30min时孔隙率最大;多孔硅膜厚随时间增加而增大,其生长速度为2μm.min-1左右;当新鲜多孔硅形成后,其表面出现微裂缝,内部含大量长度为40μm,宽度为2~3μm硅柱;当新鲜或乙醇贮存7天内的多孔硅浸入浓度不小于0.1g.mL-1NaClO4甲醇溶液后,形成的多孔硅/高氯酸钠复合材料能够发生爆炸。  相似文献   

13.
采用TiCl4水解法制备了锐钛矿和金红石型的纳米TiO2,用XRD和TEM对粉体的晶体结构和表面形貌进行了表征。在400~1 000℃之间对锐钛矿型TiO2进行煅烧,分析了不同温度处理后样品的晶体结构和光催化活性的变化。结果表明:以TiCl4为前驱体,在90℃时水解制得的锐钛矿型纳米TiO2在600~~800℃之间开始向金红石型转变,在800℃时全部转变为金红石型纳米TiO2;600℃煅烧处理后的纳米TiO2具有最好的光催化活性,光照3 h后对甲基橙的降解率可以达到86.96%。  相似文献   

14.
新型锂离子电池正极材料LiFePO4的研究进展   总被引:1,自引:0,他引:1  
综述了新型锂离子电池正极材料LiFePO4的研究进展,重点阐述了LiFePO4材料的结构、制备方法、改性研究,并对当前国内外LiFePO4产业化现状进行了介绍.LiFePO4以其优良的综合性能,被认为是最有前途的锂离子电池正极材料.  相似文献   

15.
对铸造Ti-6Al-4V的原始组织进行了分析,得出原始组织形态的影响规律;相同的试样在相同的变形度、不同变形速率和不同变形温度的进行等温压缩变形,研究了其变性形后的内部组织并得出规律.  相似文献   

16.
日本03式中程地空导弹——SAM-4   总被引:1,自引:1,他引:0  
SAM-4是日本纯国产的中程地空导弹,主要用来替换服役多年的美国霍克防空导弹.介绍了该导弹的研制背景、 技术性能特点及装备部署和改进情况,特别对该导弹的性能作了具体的比较分析.  相似文献   

17.
以4-氯吡唑(4-CP)为原料,经过硝硫混酸硝化制得4-氯-3,5-二硝基吡唑(4-CDNP),再以硝酸银为亲核试剂进行亲核取代反应得到一种新型的含能化合物3,5-二硝基吡唑-4-硝酸酯(DNPN),并采用红外光谱、核磁共振、元素分析对产物结构进行了表征,计算了其爆轰性能,考察了硝硫混酸组成、硝化温度对硝化反应的影响,得到较佳的合成条件:硝硫混酸组成为V(98%硝酸):V(98%硫酸)=1∶4,反应温度为100℃,反应时间为5 h,产率为65.1%。4-CDNP与硝酸银的反应很快,在40℃下反应1h产率就可达到35.6%。DNPN的爆速为8.78 km·s~(-1),爆压35.12 GPa,优于TNT。  相似文献   

18.
钛合金TC4的研究开发与应用   总被引:30,自引:2,他引:28  
综述了国内外主要的TC4(Ti6Al4V)材料的基本特性、力学性能和应用领域,介绍了目前TC4的研究现状与进展, 各种工艺对TC4产品力学性能的影响,以及TC4的超塑成形、近β锻造和计算机模拟等。通过塑性变形和热处理工艺的 结合,可获得具有较高强度和优良延展性的TC4材料,并将成为21世纪最重要的民用材料之一。  相似文献   

19.
美军C^4ISR革命   总被引:1,自引:0,他引:1  
2002年秋美军新成立的信息开发办公室在C^4ISR的基础上提出了一个新的概念——C^4KISR。对C^4KISR的概念、功能以及达到的目标进行了全面的介绍。  相似文献   

20.
通过对多元Lanchester方程作战理论和C4ISRK系统的研究,提出了将C4ISRK系统能力指数作为损耗系数建立空防对抗模型的方法.应用所建立的模型对空防对抗条件下的系数效能进行研究,可以对战役优势评估、进程预测、配置优化等活动提供决策支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号