首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
皮骏  陈晓  林家泉 《润滑与密封》2018,43(11):47-51
为进一步提高箔片轴承性能,提出了交错式箔片轴承结构,并建立交错式波箔型气体动压轴承模型;应用有限元法和松弛迭代法对雷诺方程与气膜厚度方程进行差分迭代求解,通过控制气膜压力的收敛,得到交错式箔片轴承气膜厚度和压力分布,并计算相关的静态特性。结果表明:与传统波箔构型轴承相比,交错式波箔型气体动压轴承的承载力明显提升,而摩擦力矩有所增加,尤其在转速与长径比增大的情况下更为明显;随转速与长径比的增大,交错式波箔型气体动压轴承与传统轴承的偏位角大小与变化基本相同,气膜压力三维分布也相一致。  相似文献   

2.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

3.
本文建立了悬臂型箔片气体动压轴承热流耦合性能计算模型,并据此分析了箔片数、宽径比和偏心率对其承载特性影响。研究表明,随箔片数和宽径比的增大,其承载力逐渐增加,当偏心率增加至某一值后,承载力反而有所下降。  相似文献   

4.
《轴承》2020,(1)
建立了动压气体轴承非线性气膜力模型,基于DyRoBes-Beperf软件分析了不同转速下动压气体轴承静、动力学特性,如偏心率、最小气膜厚度、最大气膜压力、摩擦功耗、临界轴颈质量、刚度系数、阻尼系数等。结果表明:动压气体轴承主刚度随转速增加呈先减小后增大,同静压气体轴承相似;偏心率对最大气膜压力影响显著;当工作转速低于临界转速时,转速对最大气膜压力影响较大,当工作转速高于临界转速时,转速对最大气膜压力影响不大。  相似文献   

5.
吕昕 《润滑与密封》2022,47(4):146-153
随着旋转机械的不断发展,箔片动压轴承已经发展到了第四代.其中,多叶式波箔气体动压轴承以其大预紧力和耐高温涂层技术的应用而拥有广阔的发展前景.以多箔叠加弹性结构作为切入点,应用悬臂弯曲梁模型和线性弹簧模型来等效箔片结构中的顶层平箔和支承波箔,从而获得不同于前三代箔片动压轴承的气膜厚度方程.基于有限差分法耦合气膜厚度方程和...  相似文献   

6.
建立考虑气体可压缩性和箔片变形的波箔型轴承气膜厚度模型,采用有限差分和松驰迭代法耦合求解Reyn olds方程和气膜厚度方程,得到波箔型轴承气膜厚度和气膜压力分布,并分析波箔型动压径向气体轴承结构参数和运行参数对其静态性能的影响.结果表明:波箔型轴承数值分析结果与相关文献试验数据相符度较好,证明该模型的科学性与精确性;对比箔片轴承和传统刚性表面轴承气膜压力和气膜厚度的分布特点,表明箔片轴承具有更高的承载能力;随着偏心率、转速的增大,箔片轴承承载能力增大,偏位角减小;随着转速增大,气膜压力提高,箔片变形增大,最小气膜厚度增大.  相似文献   

7.
基于箔片非线性刚度模型的气体箔片轴承静特性研究*   总被引:1,自引:0,他引:1  
基于箔片轴承结构刚度试验结果推导单个波纹箔片非线性刚度模型,通过有限差分法耦合求解气体Reynolds方程、气膜厚度方程和单个波纹箔片非线性刚度方程得到了轴承静态特性,研究波纹箔片非线性刚度对轴承静态特性的影响。通过对波纹箔片非线性模型和文献中的波纹箔片等刚度模型仿真结果进行对比分析,结果表明:单个波纹箔片刚度具有很强的非线性,轴承气膜压力分布不均使得轴承承载区波纹箔片的刚度要远远大于非承载区的刚度,并且轴承轻载时非线性刚度模型刚度值较小导致仿真得到的轴颈偏心率和非承载区的气膜厚度都明显大于文献恒定刚度模型的结果。此外,通过分析得出了一种先进行刚度试验得到单个箔片非线性刚度模型后利用数值方法进行求解的箔片轴承静特性分析方法。  相似文献   

8.
搭建了波纹箔片刚度测试试验台,基于单片波纹箔片结构的刚度测试试验,利用Matlab拟合试验数据的方式推导出波纹箔片非线性的刚度模型。根据扇形波纹箔片的结构特点,对波纹箔片划分网格,根据各节点的面积占比,对各节点赋予刚度值。通过有限元法和有限差分法,耦合气体雷诺方程、气膜厚度方程以及波纹箔片非线性刚度模型的方程进行求解,研究波纹箔片非线性刚度特点对气体止推箔片轴承静态特性的影响。对恒定刚度模型和非线性刚度模型进行仿真分析,并与试验结果进行对比,验证波纹箔片非线性刚度的合理性。对两种模型所计算的止推轴承偏心率进行比较,发现了止推箔片轴承在轻载时,非线性刚度模型的波纹箔片刚度更小,偏心率更大。另外,利用箔片刚度试验和理论相结合的方法预测止推轴承静态特性,其方法具有一定的工程指导意义。  相似文献   

9.
陈阳  张功学  吴垚 《润滑与密封》2023,48(10):157-164
多叶动压气体滑动轴承因其结构简单、摩擦阻力低、旋转精度高和无环境污染等优点,在高速离心分离机、空气压缩机和透平膨胀机等旋转机械中应用广泛。为探究多叶动压气体滑动轴承的静态性能,通过数学变换将三叶动压轴承的气体润滑Reynolds方程转化为标准偏微分方程形式,利用有限差分法和超松弛迭代法进行数值求解,研究气膜厚度和气膜压力分布、承载力、摩擦因数和质量流量等静态性能,随偏心率、预负荷系数、轴承数、长径比及瓦块分布位置的变化规律。结果表明:三叶轴承的承载力和轴颈表面摩擦因数随偏心率和长径比的增加而增加,而偏位角和质量流量随偏心率和预负荷系数的增加则呈现出相反的变化趋势;随着轴承数和预负荷系数的增大,承载力和摩擦因数显著提高,偏位角和质量流量则逐渐减小;瓦块分布位置对三叶动压气体滑动轴承的静态性能影响显著,其中瓦上承载方式的承载力、偏位角和质量流量明显高于瓦间承载方式。  相似文献   

10.
以狭缝节流动静压气体径向滑动轴承为研究对象,采用有限差分方法求解其可压缩气体润滑Reynolds方程,获得压力分布,进而获得轴承承载力、刚度、阻尼等表征滑动轴承静动态特性的参数,并分析偏心率、长径比、槽宽比等轴承的结构参数及供气压力和转速等工况对轴承动静态性能的影响规律。结果表明:在轴承其他参数确定的情况下,连续性狭缝轴承较非续性狭缝轴承具有更大的承载力和刚度;增大偏心率、长径比、供气压力和减小槽宽比均能增加轴承的承载力和刚度;大偏心率、高转速下轴承动压效应突出,可有效提高轴承的承载能力和稳定性能。  相似文献   

11.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

12.
透平膨胀机应用的小孔节流式静压气体轴承的本质是动静压混合气体轴承,这里将动静压混合气体轴承作为研究对象,从动压轴承和静压轴承角度分别研究其工作原理和静态特性。混合气体轴承中气膜压力分布是求解轴承静态特性的关键,采用有限差分法(FDM)对含有气膜压力的Reynolds方程通过MTLAB编写的程序进行求解,分析混合轴承的工作原理并计算其静态特性。对比分析偏心率、转速、长径比和供气压力等因素对动压轴承和静压轴承静态特性的影响。结果表明:增大偏心率、提高转速、增大供气压力,采用轴承大长径比均可以提高动静压混合气体轴承的承载力;增大偏心率和提高转速,可增大气膜刚度,降低转子姿态角,提高转子稳定性。  相似文献   

13.
Fluent软件对单狭缝节流径向静压气体轴承的静态特性进行三维建模计算,研究了轴承长径比、节流狭缝宽度、节流狭缝深度、气膜厚度等对轴承静态特性的影响规律,得到以下结论:1在轴承各参数确定的情况下,当轴承的长径比取1.6时轴承具有较高的承载力和刚度;2狭缝宽度大于8μm时,狭缝宽度越大,轴承的承载、刚度越小,耗气量越大;3节流狭缝深度越大,轴承静态特性越佳,但综合考虑制造难度,狭缝深度在20 mm时最佳;4气膜厚度存在最佳承载和刚度状态值;5偏心率为0.1~0.4时,轴承的刚度取得最大值,承载随偏心率的增大而增大,耗气量则相反。  相似文献   

14.
多孔质气体静压径向轴承的Fluent仿真与实验研究   总被引:1,自引:0,他引:1  
多孔质气体静压轴承相比传统的小孔节流轴承具有更高的承载能力,更好的稳定性及便于加工等优点。应用基于有限体积法的软件Fluent分析偏心率、多孔质材料渗透率、轴承长径比和平均气膜厚度等关键因素对多孔质径向轴承静态性能的影响,分析结果显示,在给定轴承平均气膜厚度的情况下,存在最佳的渗透率区间使得承载能力最大,增加轴承长径比和减小平均气膜厚度均可以提高多孔质径向轴承的承载能力及刚度,但需要根据加工装配工艺要求及实际工况选择合适的参数。设计制造中心供气新形式的多孔质径向轴承,通过仿真得到气膜间隙的压力分布及承载能力,并通过实验验证仿真结果的正确性。仿真和实验结果表明,该结构形式的多孔质径向轴承承载性能优良。  相似文献   

15.
针对新型弹性支承微型箔片动压轴承的弹性结构,提出了刚度预测模型,并搭载静态刚度测试试验台,验证了计算模型的正确性。通过耦合弹性结构刚度模型和考虑一阶滑移流的雷诺方程,研究了在滑移流影响下的轴承的静、动态特性。发现在定转速下,随着载荷的增加,滑移流对于轴承的偏心率和最小气膜厚度的影响逐渐增大;随着转速的增加轴承刚度逐渐增加,阻尼则逐渐减小;在滑移流影响下轴承刚度减小,阻尼增加。弹性支承结构的厚度和单元个数对于静动态结果影响明显。  相似文献   

16.
弹性支承箔片动压气体径向轴承理论模型的研究   总被引:3,自引:3,他引:0  
提出了一种新型结构弹性支承箔片动压气体径向轴承,针对此种结构,提出了求解弹性流体动力润滑问题(EHDL)的弹性基础支承箔片轴承流.固耦合物理模型,分析了弹性基础支承材料的特性,建立了弹性基础受力三维六自由度变形和考虑了包括非线性项动态气膜力和轴承不对中(角偏差)效应的非定常可压缩雷诺方程的数学模型;然后从控制方程出发,给出了求解弹性支承箔片动压气体径向轴承静态特性参数(压力分布、承载力、偏位角、摩擦力矩)的分析方法;并以静特性分析为基础,采用Lund的线性化假设,分析了弹性支承箔片动压气体径向轴承的动态性能(4个刚度系数及4个阻尼系数);最后在动特性分析的基础上,采用刚性对称转子模型,分析了轴承的稳定性.  相似文献   

17.
由于涡轮转子和涡轮喷杯的悬臂作用,高速气动涡轮在工作中易发生转轴倾斜现象。为探讨轴径倾斜对多孔质气体径向轴承性能的影响,设计双槽型和单槽型2种多孔质气体径向轴承结构,并分析多孔材料的变厚度分布、偏心率和倾斜角大小等结构误差和系统运动误差对轴承性能的影响。结果表明:在偏心率一定的情况下,双沟槽结构的刚度和承载能力高于相同条件下的单沟槽结构,并且在高速运转状态下,随着倾角的增加双沟槽结构具有更高的垂直力矩和水平力矩;当偏心率增大时,双沟槽的刚度高于单沟槽,所以双沟槽具有更好的抗倾斜能力;当气膜厚度增加时,2种结构的垂直力矩和水平力矩都下降,说明气膜厚度对轴承抗倾斜能力具有一定影响。  相似文献   

18.
以新型鼓泡箔片动压止推气体轴承为研究对象,采用有限差分法和Newton-Raphson迭代法通过Matlab软件编程求解流固耦合的数值模型,得到了同一温度下不同润滑气体以及同一润滑气体在不同温度下的轴承气膜压力分布、厚度分布和承载能力;研究了润滑气体物性参数对航空涡轮冷却器中箔片动压止推气体轴承静特性的影响规律。结果表明:动力黏度较大的润滑气体形成较大的气膜压力和气膜厚度分布,并产生较高的承载能力;随着轴承长时间高速运行产生的高温导致的润滑气体物性参数的改变有利于提高轴承的承载能力。  相似文献   

19.
弹性箔片动压气体推力轴承承载性能研究   总被引:3,自引:0,他引:3  
气弹耦合解是准确预测弹性箔片动压气体轴承承载性能的有效方法。通过引入箔片的弹性变形以及联立求解动压气体润滑Reynolds方程和弹性箔片的变形方程,给出了弹性箔片动压气体推力轴承的气弹耦合解。应用气弹耦合解理论,将顶层箔片的局部弹性变形纳入考虑范围,对弹性箔片动压气体推力轴承的承载性能进行了计算和分析。有限元数值仿真结果表明:顶层箔片在气膜压力作用下的局部弹性变形直接导致弹性箔片动压气体推力轴承承载能力的降低;根据轴承瓦块上气膜压力分布的特点合理设计支承拱箔的结构形式,可以减小顶层箔片的局部弹性变形,有效提高轴承的承载能力。得到了一种承载能力较高的弹性箔片动压气体推力轴承支承拱箔结构设计方案。  相似文献   

20.
受硅微加工技术的限制,微气体润滑径向轴承经常产生Bow型加工缺陷,带来气膜厚度沿轴向的不一致性。将存在Bow型加工缺陷的动压气体轴承的膜厚方程与超薄气膜润滑理论相结合,推导同时考虑硅微加工缺陷及稀薄气体效应的微气体轴承润滑方程,并采用Newton Raphson方法进行求解。用“简正模”法推导系统的动特性系数及稳定性的求解模型,探讨硅微加工缺陷对轴承润滑特性及动力学特性的影响规律。结果表明,侧壁Bow型加工缺陷使得气膜中的压力分布变得平坦,降低系统的承载能力和气膜刚度,使临界质量曲线整体上移,增大轴承维持稳定运转所需的最小偏心率;此外,大偏心率时存在Bow型缺陷的轴承的高速性能差,增大轴承数有可能造成系统失稳,且缺陷程度越大,影响越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号