首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
为提升服务机器人的社会可接受性,与人共融的社会意识导航一直是服务机器人研究领域的热点之一。重点对服务机器人社会意识导航方法展开综述,概述了服务机器人社会意识导航总体框架及主要研究方法;详细总结了基于社会空间关系模型(包括社会力模型和高斯模型)、基于社会行为学习及基于行人轨迹预测的社会意识导航方法;对服务机器人社会意识导航未来的发展趋势进行了展望。  相似文献   

2.
由于动态未知环境下自主移动机器人的导航具有较大困难,为实现自主机器人在动态未知环境下的无碰撞运行,文中将行为优先级控制与模糊逻辑控制相结合,提出4种基本行为控制策略:目标寻找、避障、跟踪和解锁.针对'U'型和'V'型障碍物运行解锁问题,提出了行走路径记忆方法,并通过构建虚拟墙来避免机器人再次走入此类区域.仿真实验表明,所提出的控制策略可有效地运用于复杂和未知环境下自主移动机器人的导航,且具有较好的鲁棒性和适应性.  相似文献   

3.
移动机器人非视觉传感器及其信号处理方法   总被引:5,自引:1,他引:5  
陈细军  叶涛  李磊  侯增广  谭民 《机器人》2003,25(4):313-318
非视觉传感器是机器人认识和了解外部环境的重要途径,移动机器人常用的非视觉 传感器包括超声、红外、接近传感器等.这些传感器大多是以环或阵列的形式出现,因此其 信号处理往往要占用机器人大量的CPU时间.本文提出了一种采用多DSP控制和处理各类非视 觉传感器的方法,给出了传感器信号处理的原理和具体实现.同时我们引入了并行处理的机 制,各类传感器信号处理可同时进行,在很大程度上提高了机器人传感器信号处理的速度, 有利于机器人在实时动态环境中运行.并给出了非视觉传感器信号处理的实验结果,验证了 该方法的有效性.   相似文献   

4.
基于地图的移动机器人自定位与导航系统   总被引:2,自引:0,他引:2  
郑宏  王景川  陈卫东 《机器人》2007,29(4):397-402
针对地图已知情况下的移动机器人大范围导航问题,研制了一个由地图编辑器模块、地图匹配与定位模块以及多层递阶规划模块三部分组成的移动机器人导航系统.地图编辑器负责导航地图的编辑;地图匹配与定位模块利用里程计和激光雷达数据实现基于地图匹配的自定位;多层递阶规划模块将基于拓扑地图的全局规划、基于栅格地图的局部规划和底层的行为控制功能有机结合.通过室内定位和大范围导航实验评估了本系统的有效性和准确性.  相似文献   

5.
To fully utilize the information from the sensors of mobile robot, this paper proposes a new sensor‐fusion technique where the sample data set obtained at a previous instant is properly transformed and fused with the current data sets to produce a reliable estimate for navigation control. Exploration of an unknown environment is an important task for the new generation of mobile service robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar‐sensing system or the visual‐sensing system. Notice that in the conventional fusion schemes, the measurement is dependent on the current data sets only. Therefore, more sensors are required to measure a given physical parameter or to improve the reliability of the measurement. However, in this approach, instead of adding more sensors to the system, the temporal sequences of the data sets are stored and utilized for the purpose. The basic principle is illustrated by examples and the effectiveness is proved through simulations and experiments. The newly proposed STSF (space and time sensor fusion) scheme is applied to the navigation of a mobile robot in an environment using landmarks, and the experimental results demonstrate the effective performance of the system. © 2004 Wiley Periodicals, Inc.  相似文献   

6.
We present the path-planning techniques of the fire-escaping system for intelligent building, and use multiple mobile robots to present the experimental scenario. The fire-escaping system contains a supervised computer, an experimental platform, some fire-detection robots and some navigation robots. The mobile robot has the shape of a cylinder, and its diameter, height and weight are 10?cm, 15?cm and 1.5?kg, respectively. The mobile robot contains a controller module, two DC servomotors (including drivers), three IR sensor modules, a voice module and a wireless RF module. The controller of the mobile robot acquires the detection signals from reflective IR sensors through I/O pins and receives the command from the supervised computer via wireless RF interface. The fire-detection robot carries the flame sensor to detect fire sources moving on the grid-based experiment platform, and calculates the more safety escaping path using piecewise cubic Bezier curve on all probability escaping motion paths. Then the user interface uses A* searching algorithm to program escaping motion path to approach the Bezier curve on the grid-based platform. The navigation robot guides people moving to the safety area or exit door using the programmed escaping motion path. In the experimental results, the supervised computer programs the escaping paths using the proposed algorithms and presents movement scenario using the multiple smart mobile robots on the experimental platform. In the experimental scenario, the user interface transmits the motion command to the mobile robots moving on the grid-based platform, and locates the positions of fire sources by the fire-detection robots. The navigation robot guides people leaving the fire sources using the low-risk escaping motion path and moves to the exit door.  相似文献   

7.
This paper describes a mobile robot navigation control system based on fuzzy logic. Fuzzy rules embedded in the controller of a mobile robot enable it to avoid obstacles in a cluttered environment that includes other mobile robots. So that the robots do not collide against one another, each robot also incorporates a set of collision prevention rules implemented as a Petri Net model within its controller. The navigation control system has been tested in simulation and on actual mobile robots. The paper presents the results of the tests to demonstrate that the system enables multiple robots to roam freely searching for and successfully finding targets in an unknown environment containing obstacles without hitting the obstacles or one another.  相似文献   

8.
It is envisioned that in the near future personal mobile robots will be assisting people in their daily lives. An essential characteristic shaping the design of personal robots is the fact that they must be accepted by human users. This paper explores the interactions between humans and mobile personal robots, by focusing on the psychological effects of robot behavior patterns during task performance. These behaviors include the personal robot approaching a person, avoiding a person while passing, and performing non-interactive tasks in an environment populated with humans. The level of comfort the robot causes human subjects is analyzed according to the effects of robot speed, robot distance, and robot body design, as these parameters are varied in order to present a variety of behaviors to human subjects. The information gained from surveys taken by 40 human subjects can be used to obtain a better understanding of what characteristics make up personal robot behaviors that are most acceptable to the human users.  相似文献   

9.
Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a variety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior. A popular approach to overcome this problem and to achieve accurate localization is to use artificial landmarks. In this paper, we consider the problem of optimally placing such artificial landmarks for mobile robots that repeatedly have to carry out certain navigation tasks. Our method aims at finding the minimum number of landmarks for which a bound on the maximum deviation of the robot from its desired trajectory can be guaranteed with high confidence. The proposed approach incrementally places landmarks utilizing linearized versions of the system dynamics of the robot, thus allowing for an efficient computation of the deviation guarantee. We evaluate our approach in extensive experiments carried out both in simulations and with real robots. The experiments demonstrate that our method outperforms other approaches and is suitable for long-term operation of mobile robots.  相似文献   

10.
In social environments, humans mostly stay in social interactive groups with their daily activities. A mobile service robot must be aware of not only human individuals but also social interactive groups, and then behave safely and socially (politely and, respectively) in human interactive environments. In this paper, we propose a social reactive control (SRC) that enables a mobile service robot to navigate safely and socially in the human interactive environments. The SRC is derived by incorporating both states of individuals (position, orientation, motion, and human field of view) and social interactive groups (group’s types, group’s centre, group’s radius, and group’s velocity) into the conventional social force model . The SRC can be combined with a conventional path planning technique to generate a socially aware robot navigation system that is capable of controlling mobile service robots to traverse with socially acceptable behaviours. We validate the effectiveness of the proposed social reactive control through a series of real-world experiments.  相似文献   

11.
The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.  相似文献   

12.
The global dynamic behavior of multiple interacting autonomous mobile robots with simple navigation strategies is studied. Here, the effective spatial domain of each robot is taken to be a closed ball about its mass center. It is assumed that each robot has a specified cone of visibility such that interaction with other robots takes place only when they enter its visibility cone. Based on a particle model for the robots, various simple homing and collision-avoidance navigation strategies are derived first. Then, an analysis of the dynamical behavior of the interacting robots in unbounded spatial domains is made. The article concludes with the results of computer simulation studies of two or more interacting robots.  相似文献   

13.
Most state-of-the-art navigation systems for autonomous service robots decompose navigation into global navigation planning and local reactive navigation. While the methods for navigation planning and local navigation themselves are well understood, the plan execution problem, the problem of how to generate and parameterize local navigation tasks from a given navigation plan is largely unsolved.

This paper describes how a robot can autonomously learn to execute navigation plans. We formalize the problem as a Markov Decision Process (MDP) and derive a decision theoretic action selection function from it. The action selection function employs models of the robot’s navigation actions, which are autonomously acquired from experience using neural networks or regression tree learning algorithms. We show, both in simulation and on an RWI B21 mobile robot, that the learned models together with the derived action selection function achieve competent navigation behavior.  相似文献   


14.
Autonomous mobile robots need environmental maps to navigate to specific destinations, but there are difficulties in generating and acquiring efficient maps for them. Map learning systems and map representation for autonomous robot navigation are highly interrelated and need a total system design that combines these two factors. This study considers a combined simple map representation and map learning system. The proposed map representation includes geometrical relationships between important places and grid maps for these places, but not a total grid map of the environment. In particular, the study focuses on the ability to recognize places based on image features. Successful experiments on autonomous navigation with the proposed map representation using an actual mobile robot are described.  相似文献   

15.

This article describes a novel qualitative navigation method for mobile robots in indoor environments. The approach is based on qualitative representations of variations in sensor behavior between adjacent regions in space. These representations are used to localize and guide planning and reaction. Off-line, the system accepts as input a line-based diagram of the environment and generates a map based on a simple qualitative model of sensor behavior. During execution, the robot controller integrates this map into a reaction module. This architecture has been tested both in simulation and on a real mobile robot. Results from both trials are provided.  相似文献   

16.
《Advanced Robotics》2013,27(13):1565-1582
Autonomous agents that act in the real world utilizing sensory input greatly rely on the ability to plan their actions and to transfer these skills across tasks. The majority of path-planning approaches for mobile robots, however, solve the current navigation problem from scratch, given the current and goal configuration of the robot. Consequently, these approaches yield highly efficient plans for the specific situation, but the computed policies typically do not transfer to other, similar tasks. In this paper, we propose to apply techniques from statistical relational learning to the path-planning problem. More precisely, we propose to learn relational decision trees as abstract navigation strategies from example paths. Relational abstraction has several interesting and important properties. First, it allows a mobile robot to imitate navigation behavior shown by users or by optimal policies. Second, it yields comprehensible models of behavior. Finally, a navigation policy learned in one environment naturally transfers to unknown environments. In several experiments with real robots and in simulated runs, we demonstrate that our approach yields efficient navigation plans. We show that our system is robust against observation noise and can outperform hand-crafted policies.  相似文献   

17.
This paper deals with a navigation algorithm for swarm robot systems in which multiple mobile robots work together. The motion of each mobile robot is modeled in such a way to have more inputs than the number of outputs. The null-space projection method of this model is employed to resolve the motion of the swarm robot system while avoiding obstacles. The feasibility of the proposed navigation algorithm is verified through a simulation study using several swarm robot models.  相似文献   

18.
Autonomous and mobile robots are being expected to provide various services in human living environments. However, many problems remain to be solved in the development of autonomous robots that can work like humans. When a robot moves, it is important that it be able to have self-localization abilities and recognize obstacles. For a human, the present location can be correctly checked through a comparison between memorized information assuming, it is correct, and the present situation. In addition, the distance to an object and the perception of its size can be estimated by a sense of distance based on memory or experience. Therefore, the environment for robotic activity assumed in this study was a finite-space such as a family room, an office, or a hospital room. Because an accurate estimation of position is important to the success of a robot, we have developed a navigation system with self-localization ability which uses only a CCD camera that can detect whether the robot is moving accurately in a room or corridor. This article describes how this system has been implemented and tested with our developed robot.  相似文献   

19.
One of the applications of service robots with a greater social impact is the assistance to elderly or disabled people. In these applications, assistant robots must robustly navigate in structured indoor environments such as hospitals, nursing homes or houses, heading from room to room to carry out different nursing or service tasks. Among the main requirements of these robotic aids, one that will determine its future commercial feasibility, is the easy installation of the robot in new working domains without long, tedious or complex configuration steps. This paper describes the navigation system of the assistant robot called SIRA, developed in the Electronics Department of the University of Alcalá, focusing on the learning module, specially designed to make the installation of the robot easier and faster in new environments. To cope with robustness and reliability requirements, the navigation system uses probabilistic reasoning (POMDPs) to globally localize the robot and to direct its goal-oriented actions. The proposed learning module fast learns the Markov model of a new environment by means of an exploration stage that takes advantage of human–robot interfaces (basically speech) and user–robot cooperation to accelerate model acquisition. The proposed learning method, based on a modification of the EM algorithm, is able to robustly explore new environments with a low number of corridor traversals, as shown in some experiments carried out with SIRA.  相似文献   

20.
ABSTRACT

We present a method for implementing hardware intelligent processing accelerator on domestic service robots. These domestic service robots support human life; therefore, they are required to recognize environments using intelligent processing. Moreover, the intelligent processing requires large computational resources. Therefore, standard personal computers (PCs) with robot middleware on the robots do not have enough resources for this intelligent processing. We propose a ‘connective object for middleware to an accelerator (COMTA),’ which is a system that integrates hardware intelligent processing accelerators and robot middleware. Herein, by constructing dedicated architecture digital circuits, field-programmable gate arrays (FPGAs) accelerate intelligent processing. In addition, the system can configure and access applications on hardware accelerators via a robot middleware space; consequently, robotic engineers do not require the knowledge of FPGAs. We conducted an experiment on the proposed system by utilizing a human-following application with image processing, which is commonly applied in the robots. Experimental results demonstrated that the proposed system can be automatically constructed from a single-configuration file on the robot middleware and can execute the application 5.2 times more efficiently than an ordinary PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号