首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An environmentally friendly GAX cycle for panel heating: PGAX cycle   总被引:1,自引:0,他引:1  
The objectives of this paper are to develop an environmentally friendly GAX cycle using NH3–H2O for panel heating applications (PGAX), and compare it to a single effect cycle for panel heating applications (PSE cycle). The PGAX cycle can be operated in three different modes with just one hardware — cooling, space heating and panel heating applications. The total COP of the PGAX cycle is higher than that of the PSE cycle due to the internal heat recovery in the GAX component. The UA ratio has more significant effect on the total COP of the PGAX cycle than that of the PSE cycle. The panel heating COP is more significantly affected by the absorber UA variation than the space heating COP. There should be optimum ratios of absorber UAs to provide the highest total COP for a given split ratio of the coolant mass flow rate in the PGAX cycle. The results from the parametric analysis of UA ratio can be used to obtain the best UA combination of the absorbers for given space heating and panel heating capacities. This paper provides the optimum UA values of the absorbers for a given split ratio of the coolant mass flow rate.  相似文献   

2.
Whenever the fractional temperature lift ΔT/Tc of a heat pump is 0.15, simple cycles with one-stage throttling exhibit unsatisfactory energy performance. The adoption of multi-stage throttling, both in non-regenerative and regenerative cycles, is the most direct way of improving the cycle coefficient of performance (COP). The performance of these complex cycles is found to be a function of the molecular complexity of the working fluid, the reduced evaporation temperature, the fractional temperature lift and the number of stages of throttling. Furthermore, complex cycles are shown to be equivalent to a combination of simple cycles and their performance may be directly inferred by this route. Such calculations show that for a given fractional temperature lift an optimum molecular complexity (between that of R12 and n-butane) exists. Fluids with simpler molecules exhibit excessive vapour superheating during compression, and those with more complex molecules have excessive throttling losses. Also, with complex cycles, regeneration should be applied only to the cycle at the lowest temperature in order to improve the cycle COP and to prevent condensation during compression. As a general trend, however, complex cycles suffer a significant loss in performance compared to optimized simple cycles due to the adverse area of the two-phase diagram in which they work.  相似文献   

3.
The effects of the wall thickness of stainless steel heat exchanger tubes on the performance of adsorption machines, employing zeolite 4A coatings synthesized on metal heat exchanger tubes, are investigated. A recently developed mathematical model is used to determine the cycle durations when various wall thicknesses of the heat exchanger tubes as well as different zeolite layer thicknesses are utilized. For each case, the power and the COPcycle values of the system are estimated. In general, very high power and quite low COPcycle values are obtained when the proposed arrangement is utilized in the adsorption heat pumps. The zeolite layer thicknesses that may result in obtaining high COPcycle values are generally much higher than the optimum layer thickness value that maximizes the power and the utilization of layers thicker than the optimum value may lead to significant extensions in the cycle durations and hence to a decrease in the power obtained from the system. Decreasing the wall thickness of the heat exchanger tubes increases both the power and the COPcycle values when the optimum zeolite layer thickness for each wall thickness is taken into account. The possibility of such an enhancement will most probably be limited by the minimum wall thickness value that can actually be obtained by the available technology. The COP values of adsorption heat pumps may also be increased by using regenerative processes. Due to the generally low COP values obtained, the proposed arrangement seems especially suitable to be employed in adsorption machines utilizing energy sources of low economical value, such as waste heat. An optimum compromise between the COP value, which is closely related to the operating costs, and the power of the system should be provided, in case more valuable energy sources are utilized.  相似文献   

4.
Development of an ejector cooling system with thermal pumping effect   总被引:1,自引:1,他引:1  
This paper presents a feasibility study of an ejector cooling system (ECS) that utilizes a multi-function generator (MFG) to eliminate the mechanical pump. The MFG serves as both a pump and a vapor generator. The MFG is designed based on the pressure equilibration between high and low pressures through heating and cooling process. In this design, an ECS that contains no moving components and is entirely powered by heat can be practicable. A prototype using refrigerant R141b as working fluid was constructed and tested in the present study. The experimental results showed that the system coefficient of performance (COPo) was 0.218 and the cooling capacity was 0.786 kW at generating temperature (TG) 90 °C, condensing temperature (TC) 32.4 °C and evaporating temperature (TE) 8.2 °C. While taking into account the extra heat needed for the MFG operation, the total coefficient of performance (COPt) is 0.185. It is shown that a continuous operation for the generation of cooling effect in an ECS with MFG can be achieved. This cooling machine can be very reliable since there is no moving part.  相似文献   

5.
A heat transformer is proposed in order to upgrade low-temperature-level energy to a higher level and to recover more energy in low-temperature-level waste heat. It is difficult to achieve both purposes at the same time using a conventional heat transformer cycle and classical working pairs, such as H2O–LiBr and HN3–H2O. The new organic working pair, 2,2,2-trifluoroethanol (TFE)-N-methylpyrolidone (NMP), has some advantages compared with H2O–LiBr and NH3–H2O. One of the most important features is the wide working range as a result of the absence of crystallization, the low working pressure, the low freezing temperature of the refrigerant and the good thermal stability of the mixtures at high temperatures. Meanwhile, it has some negative features like NH3–H2O. For example, there is a lower boiling temperature difference between TFE and NMP, so a rectifier is needed in refrigeration and heat pump systems. Because TFE–NMP has a wide working range and does not cause crystallization, it can be used as the working pair in the self regenerated absorption heat transformer (SRAHT) cycle. In fact, the SRAHT cycle is the generator–absorber heat exchanger (GAX) cycle applied in a heat transformer cycle. In this paper, the SRAHT cycle and its flow diagram are shown and the computing models of the SRAHT cycle are presented. Thermal calculations of the SRAHT cycle under summer and winter season conditions have been worked out. From the results of the thermal calculations, it can be found that there is a larger temperature drop when the waste hot water flows through the generator and the evaporator in the SRAHT cycle but the heating temperature can be kept the same. That means more energy in the waste heat source can be recovered by the SRAHT cycle.  相似文献   

6.
A theoretical investigation was performed concerning the coefficient of performance (COP) of cascade refrigerating systems using N2O as refrigerant for the low temperature cascade stage and various natural refrigerants like ammonia, propane, propene, carbon dioxide and nitrous oxide itself for the high temperature stage. The basis of the comparison was a conventional R23/R134a-cascade refrigerating system for heat rejection temperatures of +55, +35 and +25 °C for air cooling, cooling tower water cooling and city water cooling, respectively. It can be stated that such an application of N2O at the primary stage and ammonia or hydrocarbons as refrigerants at the secondary stage in refrigerating systems achieves similar COP-values compared to the R23/R134a-cascade refrigerating system, whereas CO2 and N2O in a transcritical cycle in general perform worse.An application of N2O in a two-stage compression cycle with interstage injection and city water cooling at low and high interstage temperatures has a nearly equal COP as a conventional R23/R134a-cascade refrigerating system and is an interesting alternative for small laboratory refrigerating systems.  相似文献   

7.
This study deals with staged absorption and desorption cooling systems which increase the performance of absorption cycles that are driven by only low-grade energy, particularly when the working fluids are NH3H20. Instead of working with only one absorber, these systems use a cascade of absorbers composed by one operating at the evaporator pressure, followed by a series of absorbers operating at staged pressures Pj, between Pev and Pc In the same way, a cascade of generators is used for desorption. For the same operating parameters for other equipment and the same COP, the systems that we propose permit the generators to run at temperatures below those of all other systems offered up to now and using the same working fluids. When Tev = −10°C, Ta = Tc = 30°C, the temperature of the generators can be as low as 65°C while the COP of the system is 0.258 and the COPex 0.317. By increasing the temperature of generators to 85°C while maintaining the other parameters at the same values, COP becomes 0.374 and the COP,, 0.336. These results improve the performance of absorption systems using only low-grade energy (T < 100°C). Particularly, they are better than the performance of two-stage absorption systems which consist of two single-stage absorption cycles coupled with each other through the evaporator of the first cycle and the absorber of the second cycle. With the same operating parameters indicated above for our system at the evaporator, the condenser, and the absorber, these coupled cycles need temperatures at generators of 80 and 100°C, whereas they give a COP of only 0.270  相似文献   

8.
A maximum for the coefficient of performance (COPf) is verified for a temperature difference between reservoirs and the hot isotherm of a closed irreversible cyclical refrigerator working at steady-state conditions. A maximum also exists when the COPf is considered as a function only of a parameter depending on the thermal characteristics of the heat exchangers. The influence of the parameter and entropy generation on the COPf maxima is described.  相似文献   

9.
This study deals with an experimental investigation for a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions that are required for operating as the GAX (generator absorber heat exchanger) cycle. It is confirmed that the slug flow absorber operates well at the low solution flow rate conditions. From visualization results of the flow pattern, frost flow just after the gas inlet, followed by slug flow with well-shaped Taylor bubble, is observed, while dry patch on the tube wall are not observed. The liquid film at the slug flow region has smooth gas–liquid interface structure without apparent wavy motion. The local heat transfer rate is measured by varying main parameters, namely, ammonia gas flow rate, solution flow rate, ammonia concentration of inlet solution and coolant inlet conditions. The heat transfer rate while absorption is taking place is higher than that after absorption has ended. The absorption length is greatly influenced by varying main parameters, due to flow conditions and thermal conditions.  相似文献   

10.
The present study develops a cooling system using water as the working medium which is cooled at night by cellulose-pad cooling tower (CWCT) and stored for cooling application at daytime. That is, it utilizes the natural energy drawn from diurnal ambient air temperature difference. A cooling system was built and tested. It is found that the coefficient of performance of CWCT for heat dissipation of water at night, COPnt, is between 3.8 and 11 and varies linearly with the evaporation temperature glide DG (difference between cold water temperature in the storage tank and wet-bulb temperature of ambient air). The COP for room cooling at daytime run with air cooler in a room, COPday, is between 8.8 and 12.6. For day cycle operation, the measured overall cooling COPo is 5.1. COPo is expected to reach 9.4 at room temperature 45 °C.  相似文献   

11.
In this paper, the performance of the solar-driven ejector refrigeration system with iso-butane (R600a) as the refrigerant is studied. The effects that both the operating conditions and the solar collector types have on the system's performance are also examined by dynamic simulation. The TRNSYS and EES simulation tools are used to model and analyze the performance of a solar-driven ejector refrigeration system. The whole system is modelled under the TRNSYS environment, but the model of the ejector refrigeration subsystem is developed in the Engineering Equations Solver (EES) program. A solar fraction of 75% is obtained when using the evacuated tube solar collector. In the very hot environment, the system requires relatively high generator temperature, thus a flat plate solar collector is not economically competitive because the high amount of auxiliary heat needed to boost up the generator temperature. The results from the simulation indicate that an efficient ejector system can only work in a region with decent solar radiation and where a sufficiently low condenser temperature can be kept. The average yearly system thermal ratio (STR) is about 0.22, the COP of the cooling subsystem is about 0.48, and the solar collector efficiency is about 0.47 at Te 15 °C, Tc 5 °C above the ambient temperature, evacuated collector area 50 m2 and hot storage tank volume 2 m3.  相似文献   

12.
In this paper the experimental results of a lab-scale chilling module working with the composite sorbent SWS-1L (mesoporous silica gel impregnated with CaCl2) are presented. The interesting sorption properties of this material yield a high COP=0.6 that gives a promising alternative to the common zeolite or silica gel for application in solid sorption units driven by low temperature heat (T 100 °C). The measured low specific power of the device is a result of not optimised geometry of the adsorber and of the pelletised shape of the adsorbent. Heat transfer optimisation is currently under progress to increase the specific power. The experimental results are compared with those of a mathematic model able to describe the dynamic behaviour of the system. The model is used to study the influence of the main operating parameters on the system performance.  相似文献   

13.
The detailed parametric study of an irreversible regenerative Brayton refrigerator cycle using the new thermoeconomic approach is presented in this paper. The external irreversibility is due to finite temperature difference between the cycle and the external reservoirs while the internal irreversibilities are due to the nonisentropic compression and expansion processes and the regenerative loss. The thermoeconomic objective function defined as the cooling load per unit cost is optimized with respect to the state point temperatures for a typical set of operating conditions. The power input and cooling load are found to be decreasing functions of the expansion outlet temperature (T1), while it is the reverse in the case of COP. On the other hand, there are optimal values of the temperature T1, cooling load, power input and COP at which the cycle attains the maximum objective function for a typical set of operating parameters. Again, the objective function, COP and cooling load further enhance, while the power input goes down, as the various values of the effectiveness or efficiency components are increased.  相似文献   

14.
The hydraulic refrigeration system (HRS) is a vapor-compression system that accomplishes the compression and condensation of the refrigerant in a unique manner, by entraining refrigerant vapor in a down-flowing stream of water and utilizing the pressure head of the water to compress and condense the refrigerant. A multi-stage HRS was designed, fabricated, and tested using n-butane as the refrigerant. In general, both the refrigeration rate and the coefficient of performance (COP) increased with a corresponding decrease in the compression fluid temperature of the third and final stage. The refrigeration rate and COP were also found to increase with a corresponding increase in evaporator temperature. The predictions of an enhanced model incorporating two-phase hydraulic losses show excellent agreement with the experimental data with a maximum error of ±20%. The results of the experimental investigation indicate that the HRS offers an attractive and feasible alternative to conventional vapor-compression systems, especially in applications where direct-contact heat exchange in the evaporator is desirable.  相似文献   

15.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

16.
Refrigeration cogeneration systems which generate power alongside with cooling improve energy utilization significantly, because such systems offer a more reasonable arrangement of energy and exergy “flows” within the system, which results in lower fuel consumption as compared to the separate generation of power and cooling or heating. This paper proposes several novel systems of that type, based on ammonia–water working fluid. Importantly, general principles for integration of refrigeration and power systems to produce better energy and exergy efficiencies are summarized, based primarily on the reduction of exergy destruction. The proposed plants analyzed here operate in a fully-integrated combined cycle mode with ammonia–water Rankine cycle(s) and an ammonia refrigeration cycle, interconnected by absorption, separation and heat transfer processes. It was found that the cogeneration systems have good performance, with energy and exergy efficiencies of 28% and 55–60%, respectively, for the base-case studied (at maximum heat input temperature of 450 °C). That efficiency is, by itself, excellent for cogeneration cycles using heat sources at these temperatures, with the exergy efficiency comparable to that of nuclear power plants. When using exhaust heat from topping gas turbine power plants, the total plant energy efficiency can rise to the remarkable value of about 57%. The hardware proposed for use is conventional and commercially available; no hardware additional to that needed in conventional power and absorption cycles is needed.  相似文献   

17.
This paper is the second part of our study on the advanced energy storage system using H2O–LiBr as working fluid. In the first part, the system working principle has been introduced, and the system dynamic models in the operation process have also been developed. Based on the previous research, this paper focuses on the numerical simulation to investigate the system dynamic characteristics and performances when it works to provide combined air-conditioning and hot water supplying for a hotel located near by Yangzi River in China. The system operation conditions were set as follows: the outdoor temperature was between 29 °C and 38 °C, the maximum air-conditioning load was 1450 kW, the total air-conditioning capacity was 19,890 kWh and the 50 °C hot water capacity for showering was 20 tons which needed heat about 721 kWh on a given day. Under these conditions, the system operation characteristics were simulated under the full- and partial-storage strategies. The simulation results predicted the dynamic characteristics and performances of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the compressor intake mass or volume flow rate, discharge pressure, compression ratio, power and consumption work, the heat loads of heat exchanger devices in the system and so on. The results also showed that the integrated coefficient of performances (COPint) of the system were 3.09 and 3.26, respectively, under the two storage strategies while the isentropic efficiency of water vapor compressor was 0.6. The simulation results are very helpful for understanding and evaluating the system as well as for system design, operation and control, and device design or selection in detail.  相似文献   

18.
In order to settle the problem of the corrosion between sea water and the steel adsorber for ammonia system, a split heat pipe type adsorption ice making test unit, which use compound adsorbent of CaCl2 and activated carbon to improve the adsorption performance, is designed and constructed. For this test unit there is mass recovery function between two beds and the CaCl2 in compound adsorbent per bed is 1.88 kg, and there is only one pump for the whole heating and cooling phase for adsorbers. Performances of this system are tested; the lowest evaporating temperature is as low as −42 °C. At the evaporating temperature of −35 and −25 °C, the cooling powers are 0.89 and 1.18 kW, respectively. At the evaporating temperature of −15 °C, its average cooling power is 1.37 kW, which corresponds coefficient of performance of refrigeration COP=0.41 and specific cooling power per kilogram CaCl2 of each adsorber SCP=731 W kg−1. The mass recovery process has improved SCP and COP for the system by 15.5 and 24.1%, respectively. Heat transfer performance is also improved by the split heat pipe construction; the average heat transfer coefficient for a whole cycle is 155.8 W m−2 °C−1.  相似文献   

19.
This paper describes a novel cycle which uses a steam ejector to enhance the concentration process by compressing the vapour from the lithium bromide solution to a state that it can be used to re-heat the solution from which it came. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated in this paper. The theoretical results show that the coefficient of performance (COP) of the novel cycle is better than the conventional single-effect absorption cycle. The characteristics of the cycle performance show its promise in using high temperature heat source at low cost.  相似文献   

20.
This paper describes the experiment carried out to analyze the performance of a refrigeration system in cascade with ammonia and carbon dioxide as working fluids. The effect of operation parameters, such as the evaporating temperature of the low temperature cycle, the condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and superheat degree, on the system performance was investigated. Performance of the cascade system with NH3/CO2 was compared with that of two-stage NH3 system and single-stage NH3 system with or without economizer. It was found that the COP of the cascade system is the best among all the systems, when the evaporating temperature is below −40 °C. Also, the cascade system performance is greatly affected by evaporating temperature, condensing temperature of low temperature cycle, temperature difference in cascade heat exchanger and is only slightly sensitive to superheat degree. All the experimental results indicate that the NH3/CO2 cascade system is very competitive in low temperature applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号