首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了连铸38CrMoAl钢(/%:0.35 ~ 0.42C、0.20 ~ 0.45Si、0.30 ~0.60Mn、1.35 ~ 1.65Cr、0.15~0.25Mo、0.70 ~ 1.10Al)夹杂物类型和形成原因.通过优化脱氧制度:提高60 t EAF终点[C] ≥0.010%,保持高碱度渣(R≥2.5),出钢前2 ~3 min向熔池喷吹碳粉,控制(FeO),出钢过程减少Si-Fe加入量;LF喂铝线并用铝粒扩散脱氧,采用(/%)50~60CaO、10 ~ 15SiO2、15 ~ 20Al2O3、≤0.7(FeO+ MnO)、≤5MgO高碱度渣;做好VD后保护浇铸,有效地降低钢中Al2O3类型非金属夹杂物.结果表明,优化工艺后38CrMoAl钢连浇炉数达到9炉,夹杂物废品率≤1%.  相似文献   

2.
采用Factsage热力学软件和KTH模型分别绘制了CaO-SiO2-Al2O3渣系等CaO、等Al2 O3活度、等温度线图和等硫容量图,探讨了LF精炼渣碱度、ω(CaO)/ω(Al2O3)、曼内斯曼指数与渣系熔点、硫容量以及吸附Al2O3夹杂能力的关系,最终获得高洁净度铝镇静钢理论渣系目标成分:ω (CaO)=50%~55%,ω(Al2O3)=22 %~26%,ω(SiO2)=10%~12%,ω(MgO)=5%~8%.40Cr钢的现场试验证明应用该渣系铸坯ω(T.O)能够稳定控制在15×10-6以下,ω(S)平均达到90×10-6,洁净度达到了国内先进水平.  相似文献   

3.
通过半球点法研究了B2O3对40.5%-70.0%CaO-19%~45%Al2O3-SiO2-MgO-CaF2五元渣系熔化温度和完全熔化时间的影响。实验结果表明,当渣中CaO含量为40.5%~60%,CaF2 2%-10%,(B2O3%)/(CaF2%)为0.17—0.33时,渣系的熔化温度较不加B2O3的五元渣平均降低30℃,完全熔化时间平均降低49s。合适的多元脱硫精炼渣系的成分为60%CaO,19%-30%Al2O3,≤10%(MgO+SiO2),2%~6%CaF2,(B2O3)/(CaF2)=0.17。  相似文献   

4.
精炼渣具有脱硫和净化钢液的作用,在炉外精炼渣中采用精炼渣精炼钢水已成为洁净铜生产重要的技术手段。论文根据钢种的质量要求,以脱硫和铜中夹杂物控制为目标,结合水铜主要生产品种,对LF精炼渣终渣成分和造渣制度进行了规划。在水钢目前生产工艺条件下,焊条焊丝钢精炼终渣成分控制CaO/SiO2=2.0~2.5,Al2O3=10%~15%;含铝冷镦钢CaO/Al2O3=1.6—1.8,SiO2〈8%;高碳硬线铜CaO/SiO2=2.5~3.5,Al2O3〈15%。精炼渣造渣制度均可采用转炉出钢渣洗,并在LF精炼炉补加渣料的方式进行。  相似文献   

5.
用10 kg感应炉进行了20%~40%高镁铝酸钙预熔渣(/%:5SiO2、37CaO、42Al2O3、13MgO、3FeO)配加60%~80%合成渣(/%:10SiO2、61CaO、25Al2O3、4MgO)及加5~10g/kg Al对初始(74~167)×10-6 [S]的低碳钢(/%:0.06C、0.20Si、1.20Mn、0.020Nb、0.015Ti)的深脱硫试验。结果表明,钢液硫含量在精炼10 min内就可到达最低值,精炼过程随着钢液氧活度逐渐升高而渣硫化物容量逐渐降低,渣钢硫分配比减小,钢液有一定的回硫;较大的铝加入量、较低的初始硫含量和较大的渣硫化物容量有利脱硫反应的进行,也可以抑制钢液回硫;20%高镁铝酸钙预熔渣+80%合成渣脱硫效果较好,控制精炼渣成分(/%):50~60CaO、5~7MgO、28~32Al2O3、~8SiO2、Al加入量3 g/kg,钢中硫含量可降至0.0016%。  相似文献   

6.
SPHC钢LF精炼过程的抑制回硅与脱硫研究   总被引:3,自引:0,他引:3  
李云  李宏  徐志荣  李艳芳  王新华 《钢铁》2007,42(2):28-30
生产SPHC钢在LF处理脱硫过程中不能抑制回硅.根据热力学理论推导出降硅参数A/S和脱硫参数C/A,应用共存理论作用浓度模型,在试验渣系成分范围内计算CaO、SiO2、Al2O3的活度求解A/S和C/A,探讨了它们与w(CaO)/w(Al2O3)、w(CaO)/w(SiO2)的关系.分析结果认为,控制w(CaO)/w(Al2O3)、w(CaO)/w(SiO2)在合适的范围内,可以有效地分别或同时抑制回硅和脱硫.与试验结果对照得知,A/S和C/A分别与LF渣系的抑制回硅和脱硫能力相对应,根据A/S和C/A进行控制是可行的.  相似文献   

7.
摘要:汽车轻量化有助于保护环境、节约能源,高铝钢有利于减轻汽车质量同时维持强塑性。但由于连铸过程中传统结晶器保护渣界面反应的制约,高合金钢铸坯质量和操作流畅性受到很大影响,引起裂纹、漏钢等问题。不仅会造成安全事故,还会增加成本。低反应型CaO Al2O3系保护渣相对于传统保护渣,SiO2质量分数在6%~10%之间,[Al]和(SiO2)渣钢界面反应程度显著减弱,具有提高铸坯质量和确保操作顺行的潜力。设计此类保护渣时应该考虑渣钢界面反应、渣中元素向钢液中富集对铸坯质量的影响以及可能的结晶相种类。探讨了低反应型保护渣中成分对黏度变化机制的影响,即熔渣结构的变化、渣系过热度的变化和结晶相的变化。分别讨论了CaO/Al2O3、B2O3、Na2O、Li2O和CaF2在CaO Al2O3渣系中的作用,旨在为满足高铝钢连铸生产的新一代低反应型保护渣系的设计与优化提供思路与便利。  相似文献   

8.
CaO-Al2O3 渣系对 20CrMoH 齿轮钢中总氧和硫的影响   总被引:1,自引:0,他引:1  
研究分析了CaO-Al2O3精炼渣系对140 t LD Al直接脱氧齿轮钢T[O]和[S]的影响.结果表明,控制钢包渣中CaO/Al2O3为2.5,可使T[O]降低到0.001 3%;当渣中CaF2为5%,CaO/Al2O3为2~3时,能够增强炉渣吸收氧化物夹杂的能力;当(SiO2)增至6%~9%时,其含量变化对炉渣脱硫性能影响不大.当(siO2)为5%~10%时,较佳的精炼渣成分为(%):60~65 CaO、20~30 Al2O3、5~10 MgO、5 CaF2.  相似文献   

9.
武守防  李宏  王恭亮  梁玫 《特殊钢》2006,27(5):15-17
研究了碳含量(8.39%~14.20%)和TiO2(0.35%)对主要成分(%)为21.98~27.93CaO,32.03~43.20SiO2,4.58~5.83Al2O3保护渣在1120~1200 ℃时流动性的影响.结果表明,液态保护渣有剩余碳以及含钛钢中的Ti氧化生成TiO2进入保护渣后均会恶化保护渣的流动性能.  相似文献   

10.
李荣  郭江  张芳 《钢铁钒钛》2012,33(6):53-57
针对含B2O3无氟保护渣抑制晶体析出的问题,研究了当保护渣碱度(CaO/SiO2)等于0.9,成分为wCaO27%~36.47%、wSiO230% ~ 40.5%、wAl2O34%、wMgO5%、wNa2O0.8%、wLi2O%、wB2O34%时,wLa2O3从0增加到20%对无氟结晶器保护渣结晶性能及渣膜传热的影响.试验表明La2O3能够提高保护渣的渣膜厚度,提高其结晶率和结晶温度,降低熔渣的熔化温度,从而有效提高控制结晶器传热的能力.  相似文献   

11.
张宇斌  文光华  于雄  唐萍 《特殊钢》2013,34(6):22-25
浇铸过程无磁钢20Mn23A12V(/%:0.14~0.20C、≤0.50Si、21.5~25.0 Mn、1.50~2.50Al、0.04~0.10V)中的Al-[Al]易与保护渣中的SiO2-(SiO2)反应,导致结晶器保护渣变性,要求低碱度、低Al2O3的保护渣;并且该钢合金元素含量高,液相线温度低,要求低熔化温度的保护渣。设计了3种低碱度(0.55~0.61)、低熔化温度(904~1 015℃)的结晶器保护渣(/%:20.2~24.4CaO、35.3~40.0SiO2、2.2~4.1Al2O3、3.0~5.0B2O3),经25 t中间包,200 mm×1 260 mm板坯连铸试验。结果表明,5.0%B2O3,碱度0.50~0.60、熔化温度1 010℃、粘度0.215Pa·s的无磁钢20Mn23Al2V保护渣在0.60~0.65 m/min拉速下能较好的满足连铸工艺要求。   相似文献   

12.
Q235B钢(/%:0.14~0.17C,0.30~0.60Mn,0.010~0.040Als)和Q345B钢(/%:0.15~0.18C,1.30~1.60Mn,0.010~0.040Als)100 mm厚板的生产流程为铁水预处理-120 t转炉-LF-200 mm板坯连铸-轧制工艺。通过分析得出中厚板表面纵裂纹源于铸坯裂纹。通过保护渣碱度由1.16提高至1.26,1300℃黏度由0.80Pa·s提高至0.97 Pa·s,软搅拌时间不低于10 min,拉速控制在1.0 m/min左右,液面上下波动≤5 mm,保持结晶器锥度9.0 mm,钢水过热度20~25℃,二冷水为0.662 L/kg等工艺措施,使Q235B和Q345B钢中厚板纵裂率由2.17%下降至1.08%,板材综合合格率由原94.78%提高到98.16%。  相似文献   

13.
试验研究了组分对碱度3~5的LF精炼渣(/%:37.5~54.8CaO,9.8~18.2SiO2,20~30Al2O3,4~10MgO,3~10CaF2)粘度的影响。结果表明,CaF2和Al2O3对渣粘度影响较大,碱度和MgO对粘度影响较小。随着CaF2含量的增加,渣粘度先降低后增加;随着Al2O3含量的增加,渣粘度逐渐降低。渣中Al2O3含量为20%,CaF2≥6%或渣中Al2O3含量为25%,CaF2≥3%时,1500℃渣的粘度值低于0.5 Pa.s。试验得出粘度较优组分为4~5R,25%~30%Al2O3,6%~10%MgO,3%~6%CaF2。100 t LF精炼TC80钢生产试验表明优化后精炼渣将钢水中的硫由0.020%脱至0.005%以下,脱硫率从优化前的72%提高至84%,LF精炼终点平均T[O]为14×10-6。   相似文献   

14.
A36含硼钢(/%:0.16~0.20C、0.10~0.25Si、0.20~0.40Mn、≤0.030P、≤0.015S、0.010~0.030Al、0.015~0.025Ti、0.001 0~0.001 8B)1 550 mm×230 mm板坯的生产流程为铁水预处理-210 t BOF-钢包吹氩-LF-连铸工艺。通过控制[C]≥0.16%,结晶器保护渣碱度由1.23提高到1.27,粘度由0.165 Pa·s降至0.123 Pa·s,在拉速1.0 m/min时负滑动时间由0.22 s降至0.15 s,降低结晶器和矫直段铸坯边部的冷却水量,控制铸机对弧精度和辊缝精度,铸坯表面未发现明显的横裂纹,铸坯的修磨量由0.18%降至0.03%。  相似文献   

15.
针对津西钢铁厂H型钢Q235B(0.14%~0.18%C)铸坯(宽面550 mm,窄面440 mm,腹板90 mm)经常出现纵裂等缺陷,基于原有保护渣(%:29~30SiO2、25~26CaO、10~11Al2O3、3.0~3.5Fe2O3、15~17C、≤0.5H2O),通过正交实验和优化设计,开发出一种高性能保护渣(%:37.50SiO2、37.50CaO、6Al2O3、7CaF2、12Na2O、7石墨、1.5炭黑)。与原保护渣相比,优化渣的半球点温度、粘度和熔化时间分别从1 167℃,0.77 Pa·s和57 s下降至1 092℃,0.27 Pa·s和32.5 s。优化渣应用表明,当拉速由0.98 m/min提高到1.2 m/min时,铸坯质量良好。  相似文献   

16.
张瑜  漆鑫  杨春雷  张红斌 《特殊钢》2016,37(1):29-33
Q235B钢(0. 11% ~0. 17%C)10~20 mm热轧板的生产流程为铁水预处理-50 t转炉-吹氧-(2。0 ~ 230)mm x(900 ~ 1 600)mm板坯连铸-热轧工艺。分析表明.Q235B钢热轧板表面裂纹来源于铸坯纵裂。统计分 析了成分、钢水过热度、拉速、连铸二冷水量、保护渣等对连铸坯纵裂的影响。通过控制Mn/S≥40,钢水过热度 15-35 °C,拉速1. 15 m/min,按季节调节二冷水量,釆用熔点≥1 100 °C,粘度0.20 ~0. 32 Pa .s,碱度≥1. 10的保 护渣等措施,使Q235B钢热轧板表面纵裂纹由3.51%降至W0. 96%。  相似文献   

17.
通过对中天钢铁公司电炉厂20钢管现行精炼渣系(/%:4~17Si02,17~34Al2O3,40~65CaO)的动力学以及热力学分析,在确保炉渣粘度1.5~2.0 Pa·s的前提下,设计出较高吸附夹杂物能力的LF精炼渣系:(/%:6~15SiO2,24~34Al2O3, 58~65CaO)。试验结果表明,该渣系能够很好地满足20钢管的质量要求,达到了去除钢中夹杂物的目的,其B类夹杂评级均≤1.0。  相似文献   

18.
吴辉强  顾超  林路  包燕平 《特殊钢》2016,37(1):34-36
SK5 弹簧钢(/% :0. 75 ~0. 84C, ≤0. 35Si, ≤0. 40Mn, ≤0. 035P,≤0.030S)经 100 t EAF-LF-VD-CC 流程生产。通过EAF出钢加硅镒合金和铝铁进行预脱氧,LF精炼过程添加80~150 kg铝镁钙和少量硅锭合金进行复合铝脱氧,精炼渣碱度11.13,(CaO)/(Al2O3) =4. 98等工艺措施,脱氧效果较明显,铸坯中平均全氧含量达到 11 x 10-6项,铸坯中氮含量达到35 x 10-6。冶炼过程夹杂物种类按纯Al2O3>硫化物一'MgO - A12O3 - CaO—MgO •Al2O3 • CaO • SiO2变化,铸坯中夹杂物主要为CaO-A12O3 • SiO2 - MgO系,其塑性化程度可通过调整精炼渣成分、降低精炼渣熔点实现进一步优化。  相似文献   

19.
王艺慈  董方  王宝峰 《特殊钢》2007,28(2):22-23
研究了0-6%BaO含量对包钢CSP流程浇铸Q235B、SS400等中碳钢、主要成分(%)为31.60CaO、27.20SiO2、10.48C、4.85Al2O3、碱度为1.16的结晶器保护渣熔化温度、析晶温度和析晶率的影响。试验结果表明,在实验渣中加入≤2%BaO,可有效地改善保护渣的润滑性能,抑制晶体析出,改善熔渣的玻璃性能;BaO含量≥4%时,完全抑制晶体析出,得到良好的玻璃态渣膜。  相似文献   

20.
采用金相显微镜和扫描电镜分析了Q345E钢Φ800 mm铸坯(/%:0.15C,0.27Si,1.37Mn,0.009P,0.001S,0.03Nb,0.04V,0.030A1,0.008 ON)表面网状裂纹,得出结晶器壁和凝固坯壳之间保护渣膜厚度不均匀,使坯壳局部受挤压,产生凹坑,冷却速度降低,产生热应力裂纹。通过将保护渣碱度(CaO)/(SiO2)从1.03提高到1.15,熔点从1 235℃降至1 210℃,1 300℃粘度从0.87 Pa·s提高到1.10 Pa·s,使Φ800 mm连铸坯表面凹坑和网状裂纹的发生率从原60.5%降至0.5%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号