首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用热模拟试验机对TC6钛合金轧制态试样进行了不同温度和不同应变速率的应力—应变试验,研究TC6钛合金的高温变形行为。试验结果表明,TC6钛合金在相同的温度下,应变速率越小,热塑性越好,越容易变形;应变速率对TC6钛合金热塑性的影响还与温度有很大的关系,温度越低,热塑性受应变速率的影响越明显。800~900℃时,TC6钛合金热塑性受温度影响较大,变形温度越低,热塑性越差;900℃以上时,几乎不受变形温度和应变速率的影响。TC6钛合金在920~950℃,应变速率1.0 s-1时具有良好的热塑性和很好的热加工性能。  相似文献   

2.
采用真空热压烧结法制备了CuW30复合材料,在Gleeble-1500D热模拟机上对该材料进行等温热压缩模拟试验.研究了温度为650~950℃、应变速率为0.01~5 S-1、最大变形量为50%条件下的流变应力行为.结果表明:CuW30复合材料存在明显的动态再结晶特征.材料的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低.热变形过程的流变应力可用双曲正弦本构关系来描述.在给定的变形条件下,计算的热变形激活能为231.150 kJ/mol.根据试验分析,合金的热加工宜在850~950℃范围内进行,应变速率为0.01~0.1 S-1.  相似文献   

3.
利用Gleeble-1500热模拟实验机研究了新型Ti-6Cr-5Mo-5V-4Al合金在740~950℃,应变速率0. 01~10. 00 s~(-1)条件下的热变形行为。通过真应力-真应变曲线分析了合金在高温变形时的应力随温度及应变速率的变化规律,之后对数据进行回归分析得到了合金的本构方程,最后绘制合金的热加工图并结合微观组织观察研究该合金的热变形机制。结果如下:合金的流变应力对温度和应变速率都十分敏感。在相同的应变速率下,随温度升高,流变应力降低;而在相同温度下,应变速率升高,流变应力也升高。计算得到合金的动态激活能Q为246. 551 kJ·mol~(-1)。高温变形的本构方程为ε=4. 51×10~(10)[sinh(0. 0058σ)]~(4. 85272)exp(-246551/RT)。根据热加工图可知,两相区变形时,合金在温度740~770℃、应变速率0. 01~0. 03 s~(-1)的区域内具有最高的功率耗散系数,达到44%,变形机制为动态回复;β单相区变形时,在温度780~890℃、应变速率0. 01~0. 03 s~(-1)的区域内具有较高的功率耗散系数,为40%,变形机制包括动态回复和动态再结晶。合金的塑性失稳区主要在温度740~900℃、应变速率0. 05~1. 00 s~(-1)的区域内,失稳区内会发生局部塑性流动。  相似文献   

4.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1200℃、应变速率为0.001~10.000 s-1条件下的热变形行为,利用动态材料模型构建了GH690合金热加工图,并基于加工图进行GH690合金管材热挤压实验。结果表明:GH690合金有应力峰和动态再结晶软化的特征,在ε≥0.4时,流动应力趋于稳定状态;在热加工图中变形温度为1100~1150℃、应变速率为1.0~2.5 s-1时功率耗散效率达到0.34~0.39,该区域对应的工艺参数适合于进行GH690合金管材热挤压;在热加工图中变形温度为950~1000℃,应变速率在0.94~10.00 s-1之间的区域为不稳定变形区域,热加工时应该避开这一区域。  相似文献   

5.
通过热压缩实验,在温度950~1150℃和应变速率0. 10~10. 00 s~(-1)的范围内研究了Inconel 718高温合金的热变形行为。分析了绝热效应对应力应变曲线的影响,同时对应力应变曲线进行温度、应力修正。发现在低温高应变速率下绝热效应更加明显,温升可达170℃。经修正后的应力应变曲线并没有改变宏观规律。通过应变补偿Arrhenius型本构方程预测修正后合金的流动行为。Arrhenius型本构方程中的材料常数与真应变之间的关系由5阶多项式建立。实验值与预测值相关系数达到0. 97,说明该本构方程可以对变形过程中的流变应力进行精确预测。最后分别建立了应力应变曲线修正前后Inconel 718高温合金的热加工图。发现应力应变曲线的修正对热加工图中功率耗散图基本没有影响,功率耗散效率峰值区域没有变化。但修正后的失稳区区域面积增加。结合不同变形条件下的微观组织分析发现失稳区的微观组织由于绝热效应的原因并没有明显的失稳现象产生,并确定其合理加工区间为温度1100℃,应变速率0. 10 s~(-1)。  相似文献   

6.
付建辉 《特殊钢》2020,41(2):1-5
通过热压缩实验研究了HGH3126镍基合金(/%:≤0.005C,17.20Cr,4.21W,16.25Mo,5.49Fe,0.46Mn,0.20V)在变形温度为950~1200℃、应变速率为0.01~10 s-1的热变形行为。基于Arrhenius方程和Zener-Hollomon参数模型,建立了HGH3126合金高温热变形的流变应力本构方程。通过对高温热变形后的HGH3126合金显微组织进行观察,分析了变形温度和应变速率对HGH3126合金动态再结晶行为的影响。结果表明,变形温度越高,合金动态再结晶越容易形核;应变速率越小,合金动态再结晶过程进行得越充分。当应变速率0.1 s-1,变形温度1100℃时,该合金基本发生完全动态再结晶。  相似文献   

7.
应用Gleeble-1500D热力模拟试验机,采用等温压缩试验的方法,研究了Cu-0.1Ag合金在热压缩变形中的流变应力行为,分析了不同变形温度、变形速率对Cu-0.1Ag合金热变形行为的影响.结果表明,变形温度越高,应变速率越小,合金越容易发生动态再结晶,Cu-0.1Ag合金越容易发生热变形.同时,综合采用Arrhenius型方程和Jonas双曲线函数模型描述了Cu-0.1Ag合金的本构关系.通过对试验数据进行线性回归分析,确定了结构因子A、应力水平参数α、形变激活能Q以及应力指数n,最终得出Cu-0.1Ag合金热变形过程中应力与应变速率的本构方程.  相似文献   

8.
采用Gleeble 3500热模拟试验机研究了47Zr-45Ti-5Al-3V合金在变形温度为650~850℃和应变速率为1×10-3~1×100s-1的热变形行为。结果表明变形温度和应变速率对47Zr-45Ti-5Al-3V合金的热变形行为有显著影响。在低温和高应变率下,在变形初期阶段合金的流变曲线表现出一个显著的应力降现象,应力降幅值随变形温度的增加和应变速率的降低而降低,合金仅发生动态回复。在高温和低应变率下,真应力-应变曲线表现出典型的动态再结晶特征,流变应力随应变的增加先增加到一个峰值,随后随着应变的增加逐渐降低到一个稳态值。峰值应力随变形温度的降低和应变速率的增加而增大。Arrhenius-type本构方程在不同应变下的材料常数(α,Q,n和ln A)已经算出。热变形激活能Q随应变的增加先增加然后降低,而n随应变的增加逐渐降低到一个恒定值。通过应变补偿的Arrhenius-type本构方程对合金热变形过程中的流变应力进行预测,表明预测的流变应力值与实验数据吻合较好。  相似文献   

9.
新型Al-Zn-Mg-Cu合金热变形流变应力特征   总被引:5,自引:4,他引:1  
采用Gleeble-1500热模拟机进行热压缩变形实验,研究了一种新型Al-7.5Zn-1.6Mg-1.4Cu-0.12Zr合金在变形温度为380-460℃、应变速率为0.001~0.1 s-1条件下的流变应力特征,并利用TEM分析了合金在不同变形条件下的组织形貌特征.结果表明,应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随变形温度的升高而降低,随应变速率的提高而增大;合金平均亚晶尺寸随温度补偿应变速率Zener-Hollomon参数的升高而减小.可用Zener-Hollomon咖参数描述该Al-Zn-Mg-Cu合金热变形时的流变应力行为.  相似文献   

10.
王玉  姚瑶  田玉新 《特殊钢》2024,(2):96-100
使用热模拟压缩试验仪器,设置850~1 150℃不同应变温度和0.1~10 s-1应变速率等热变形参数进行试验,通过金相显微镜、热模拟试验等设备对合金进行组织形貌表征,结合热模拟压缩试验应力应变曲线及合金组织形貌进行分析,系统性研究4J32超因瓦合金(Fe-32Ni-4Co)在850~1 150℃高温热变形行为及组织形貌演变过程。研究发现,4J32超因瓦合金在900℃以下热变形过程不发生动态再结晶,且合金中存在大量的变形晶粒组织。当热变形温度大于1 050℃时,合金开始发生动态再结晶,且应变速率越快其动态再结晶程度越高。研究结果表明,超因瓦合金最优的热变形温度>1 100℃,应变速率为10 s-1。  相似文献   

11.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

12.
厉勇  傅万堂  郭明伟  曲明贵  周维海 《钢铁》2006,41(9):70-72,81
用Gleeble-3500热力模拟试验机在温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下对一种非调质连杆用高碳微合金钢进行了热压缩变形试验,测得了其流变曲线,并观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.试验用钢在真应变为0.8,温度为1 223~1 323 K,应变速率为0.2~10 s-1的条件下,发生完全动态再结晶.测得试验用钢的热变形激活能为289.9 kJ/mol,并得出了其热变形方程,以及动态再结晶晶粒尺寸与Zener-Hollomon参数之间的关系和动态再结晶状态图.  相似文献   

13.
采用应变速率循环法(基于时间间隔)研究了TA15合金的超塑性。在变形温度分别为850,900,950℃,应变速率范围为5×10^-6~5×10^-4s^-1的实验条件下,考察了工艺参数对流变应力、m值及其超塑性的影响。结果表明,TA15合金具有较好的超塑性,最佳变形温度为900℃,伸长率为846%。  相似文献   

14.
片层组织TC17钛合金高温变形行为研究   总被引:1,自引:0,他引:1  
通过热压缩试验研究了具有初始片层组织的TC17钛合金在780~860℃和应变速率0.001~10 s-1范围内的热变形行为和组织演变。分析了该合金在两相区变形的应力-应变曲线特征,其流变应力本构关系可以用双曲正弦方程和Zener-Hollomon参数描述,得到TC17合金在两相区变形的平均激活能为488.86 kJ.mol-1。显微组织分析发现:TC17合金在两相区变形时组织演变的主要特征是片层组织球化;热变形参数严重影响片层组织球化过程的进行,加大变形量、降低应变速率以及提高变形温度可以提高片状组织的动态球化程度。  相似文献   

15.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5.32×10^-4~2.08×10^-2 s^-1条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5.32×10^-4~3.33×10^-3 s^-1)条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8.31×10^-3 s^-1~2.08×10^-2 s^-1)条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5.32×10^-4 s^-1时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

16.
梁剑雄  雍岐龙  张良  王长军 《钢铁》2016,51(9):82-89
 运用Gleeble-3800热模拟试验机研究了1Cr17Ni1马氏体-铁素体双相不锈钢在变形温度为950~1 150 ℃、应变速率为0.1~10 s-1条件下的热压缩变形行为。运用双曲正弦函数构建了本构方程,得到了表观激活能为391.586 kJ/mol,并基于动态材料模型绘制了1Cr17Ni1钢不同应变量下的热加工图。观察变形后的组织形貌得到较低温度下发生动态回复与动态再结晶,较高温度只发生动态回复,综合热加工图与变形后组织得到最佳热变形工艺:热加工温度范围为950~1 000 ℃、热加工变形速率范围为0.1~0.3和5~10 s-1。  相似文献   

17.
在Gleeble-1500热模拟实验机上采用等温压缩实验的方法研究了Ti600合金两种状态下的热塑性变形行为,分析了合金在变形过程中的流变失稳特征。结果表明:在800—930℃,0.03~10s^-1区域内产生流变失稳现象,如出现局部塑性流动,形成绝热剪切带,进而发生开裂。在低温、高应变速率区域(T=800℃,ε=10s^-1),可以看到明显的45。开裂现象;在中温、高应变速率区(T:850℃,ε=10s^-1),压缩试样侧面出现纵向开裂。  相似文献   

18.
在Gleeble-1500热力模拟试验机上,测定变形量为60%,应变速率分别为0.1 s^-1,2.2s^-1,10s^-1,变形温度设置在1 100℃、1 050℃、1 000℃、960℃的含Mo低碳贝氏体钢的应力应变曲线.结果表明,钢在高温、低应变速率时,才有峰值应力出现,发生动态再结晶,在同一变形量下,相对于同一变形温度,变形速率越高,所对应的应力值越高.  相似文献   

19.
 采用Gleeble-3500热模拟试验机对55SiMnMo贝氏体钢进行了热压缩试验,得到了其在变形温度为950~1150℃和应变速率为0.01~10s-1条件下的高温流变应力行为。试验结果表明,峰值应力随变形温度的降低和应变率的提高而增大;当应变速率为0.01和0.1s-1,变形温度t ≥1000℃时,发生动态再结晶。基于试验结果,充分考虑了热变形工艺参数(应变、应变速率和变形温度)对流变应力的影响,建立了一种考虑应变速率补偿的高温流变应力本构方程。通过对该本构方程预测得到的流变应力值和试验值对比,验证了模型的准确性。  相似文献   

20.
研究了一种700 MPa微合金高强钢。在热力模拟试验机上进行了试验钢的单道次压缩试验,通过其各种变形参数的研究,建立了试验钢的变形抗力数学模型和动态再结晶模型。试验结果显示:试验钢在变形温度为950℃,应变速率为0.1 s-1;变形温度为1 000℃,应变速率为0.1 s-1;变形温度为1 050℃,应变速率为0.1s-1或1 s-1;变形温度为1 100℃,应变速率为0.1 s-1、1 s-1或5 s-1这几种条件下会发生动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号