首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The effect of the baking process (microwave versus conventional oven) on some starch characteristics of pound cake was evaluated. Proximal chemical analysis, total resistant starch (RS), retrograded resistant starch (RS3), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD) were evaluated. Pound cake, one of the major products of Mexico's bread industry, was selected for analysis because the high moisture and fat content in the beaten dough might reduce the quality defects often associated with microwave baking. RESULTS: Crumbs from microwave‐baked pound cakes contained lower moisture than crumbs from conventionally baked pound cake. Lower RS was observed in fresh microwave‐baked than conventionally baked pound cake. RS3 increased significantly in conventionally baked products stored for 8 days at room temperature, whereas slightly lower changes in RS3 were observed in the microwaved product. DSC revealed less gelatinisation in microwaved pound cake which is related to limited water availability during the microwave heating process. The crystallinity peaks present in conventionally baked pound cake might be associated with RS3 content; the resistant retrograded starch formed during storage, is reflected in the XRD pattern. CONCLUSION: Microwave‐baked pound cake crumbs showed less gelatinisation than conventionally baked pound cake crumbs. Copyright © 2007 Society of Chemical Industry  相似文献   

2.
BACKGROUND: With rising consumer awareness of obesity, the food industry has a market‐driven impetus to develop low‐fat or fat‐free foods with acceptable taste and texture. Fancy buckwheat flour was thus subjected to steam jet‐cooking and the performance of the resulting product in cake‐baking was evaluated as a fat replacer. RESULTS: Steam jet‐cooking caused structural breakdown and starch gelatinization of buckwheat flour, thus increasing its water hydration properties. In the pasting measurements, steam jet‐cooked buckwheat flour exhibited high initial viscosity, while no peak viscosity was observed. Also, the suspensions of steam jet‐cooked buckwheat flour exhibited shear‐thinning behaviors, which were well characterized by the power law model. When shortening in cakes was replaced with steam jet‐cooked buckwheat gels, the specific gravity of cake batters significantly increased, consequently affecting cake volume after baking. However, shortening replacement with steam jet‐cooked buckwheat up to 20% by weight appeared to be effective in producing cakes as soft as the control without volume loss. CONCLUSION: When buckwheat flour was thermomechanically modified by steam jet‐cooking, it was successfully incorporated into cake formulations for shortening up to 20% by weight, producing low‐fat cakes with comparable volume and textural properties to the control. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Gluten-free products exhibit some undesirable features due to the absence of the gluten network. Effects of ingredient interactions and baking type on the food matrix have not clearly been explored. The objective of this study was to investigate the effect of ingredient and baking types on the quality characteristics of cake by using nuclear magnetic resonance (NMR) relaxometry. Carob bean flour containing gluten-free cakes formulated either with hydroxypropyl methylcellulose (HPMC) or whey protein were baked in both conventional and microwave–infrared combination ovens. Specific gravity of batters was measured and cakes were analyzed in terms of weight loss, hardness, and specific volume. Microstructure of cakes was investigated by scanning electron microscopy (SEM). NMR relaxometry was used to support the information about water retention, and water–food matrix interactions. Cakes baked in microwave–infrared (MW-IR) combination oven had some undesirable characteristics due to higher weight loss and insufficient gelatinization of starch which was supported by SEM results. Compartments of relaxation data also indicated two specific proton pools for MW-IR-baked samples, which represented gelatinized and ungelatinized parts of the cakes. Spin–spin relaxation times (T2) were found to be good indicators for explaining the physical state and distribution of water inside the samples, having Pearson correlation of 0.96, 0.86, and ??0.98 (p?<?0.05) between monoexponential T2 values and hardness, specific volume, and moisture, respectively.  相似文献   

4.
Cake Baking in Conventional, Impingement and Hybrid Ovens   总被引:1,自引:0,他引:1  
White layer cakes were baked in three types of air impingement ovens, a hybrid (microwave/air impingement) oven, and a reel oven. Cakes were evaluated based on volume, crust color, and texture. Oven heat transfer rates were measured directly, and ranged from 22.8 to 84.8 J/s m2C° for top and from 17.4 to 110.9 for bottom surfaces, exposed in the different ovens, with the conventional reel oven having the lowest values. An RSM design was used to establish optimum baking conditions for each oven. For air impingement ovens, baking time was reduced by almost half but produced cakes very similar to those from the control (reel) oven. Incorporating microwaves enabled a further reduction in baking time, to one fourth. Cakes baked with microwaves had similar color, but had 15% less volumes and firmer textures than control cakes.  相似文献   

5.
The effects of different gums on macro-structure of gluten-free rice cakes baked in conventional and infrared–microwave (IR–MW) combination ovens were investigated by using the images obtained by scanner and scanning electron microscopy in this study. The gum types used were xanthan, guar, locust bean, κ-carrageenan and xanthan–guar blend. Cake containing no gum was used as control. It was observed that both addition of different types of gums affected the pore area fraction and percent number of pores of the rice cakes. The highest pore area fraction was obtained in cakes containing xanthan and xanthan–guar blend. Cakes baked in IR–MW combination oven had higher porosity than those baked in conventional oven. Micro-structure of gluten-free rice cakes was also analyzed. According to these results, conventionally baked cakes showed more starch granule deformations. Both granular starch residues and deformed starch structure were observed together in cakes baked in IR–MW combination oven. All of the starch granules did not lose their identity and did not disintegrate completely.  相似文献   

6.
Rice starch–water suspension (20%) were subjected to high hydrostatic pressure (HHP) treatment at 120, 240, 360, 480, and 600 MPa for 30 min. Polarizing light microscope, scanning electron microscopy (SEM), rapid visco analyzer (RVA), differential scanning calorimeter (DSC), and X-ray diffraction were used to investigate the physicochemical and structural changes of starch. Microscopy studies showed that the treatment of starch with HHP under 600 MPa for 30 min resulted in a complete loss of birefringence and a gel-like appearance. The treatment of starch suspension with HHP at 600 MPa resulted in a significant increase in swelling power and solubility at low temperature (50–60 °C), but opposite trends were found at high temperature (70–90 °C). The DSC analysis showed a decrease in gelatinization temperatures and gelatinization enthalpy with increase of pressure levels. RVA viscograms of starches exhibited an increase in peak, trough, and final viscosities, peak time, and pasting temperature but decrease of breakdown, setback viscosities, and pasting temperature when pressure was increased. X-ray diffraction studies showed that the HHP treatment converted rice starch that displayed the A-type X-ray patterns to the B-type-like pattern. These results showed that the treatment of rice starch in 20% starch/water suspension at a pressure of 600 MPa for 30 min led to a complete gelatinization of starch granules.  相似文献   

7.
利用快速黏度仪(RVA)和差式扫描量热仪(DSC)比较了不同烘烤温度和时间对豌豆粉热力学特性、糊化特性及透明度的影响,结果表明,在130℃温度下,烘烤50min所制得豌豆粉品质较佳,其糊化度大、冷热糊稳定性好、透明度适中。进一步比较藕粉和绿豆粉与豌豆粉复配后产品的色泽、气味、口感与黏性,发现添加20%的藕粉或10%的绿豆粉与豌豆粉复配后,在色、香、味上最易被人们接受。  相似文献   

8.
Pectin from yuja pomace was incorporated into cake formulations to evaluate the baking performance as a fat replacer. When shortening in cakes was replaced with different levels of pectin gel, cake batter exhibited greater viscosity and less shear-thinning behavior. The viscosities were well characterized using a Power-law model. The specific gravity of cake batter significantly increased with increasing levels of pectin gel (p<0.05) and was highly correlated with the cake volume after baking. Although cakes containing pectin exhibited increased textural hardness, shortening replacement with pectin up to 10% by weight was effective in producing cakes as soft as the control cake without a volume loss. There was an overall tendency that cakes with higher amounts of pectin showed a lighter surface color. Yuja pectin was thus used in cake baking as a fat replacer, producing baked goods with reduced fat and calorie content.  相似文献   

9.
Moisture migration largely impacts cake crumb firmness during storage at ambient temperature. To study the importance of phenomena other than crumb to crust moisture migration and to exclude moisture and temperature gradients during baking, crustless cakes were baked using an electrical resistance oven (ERO). Cake crumb firming was evaluated by texture analysis. First, ERO cakes with properties similar to those baked conventionally were produced. Cake batter moisture content (MC) was adjusted to ensure complete starch gelatinisation in the baking process. In cakes baked conventionally, most of the increase in crumb firmness during storage was caused by moisture migration. Proton nuclear magnetic resonance (1H NMR) showed that the population containing protons of crystalline starch grew during cake storage. These and differential scanning calorimetry (DSC) data pointed to only limited amylopectin retrogradation. The limited increase in amylopectin retrogradation during cake storage cannot solely account for the significant firming of ERO cakes and, hence, other phenomena are involved in cake firming.  相似文献   

10.
A dynamic height profile method using digital imaging of cakes at 2 min intervals during baking was used to analyze changes in volume during baking for cakes made with three different flour types (plain flour, heat-treated cake flour, and strong white flour) and baked at three different temperatures (175°C, 190°C, and 205°C). The cakes made from the different flours showed, with some exceptions, a similar trend in the shape and development of the top contour during baking. In the first 4–6 min of baking, there was relatively little expansion followed by a period of rapid expansion to the maximum volume and a period of contraction up to the end of baking. For the three flour types, volume peaked at 16–17 min for the medium and high baking temperatures and at 20 min for the low baking temperature. Cakes made from heat-treated cake flour and strong white flour baked at low and high temperatures produced cakes where the center of the cake was lower than the surrounding pins resulting in a final undesirable dimpled cake contour. A higher baking temperature caused the cake to rise more rapidly. Baking at high temperature produced cakes which shrank the most (P < 0.001) during cooling. Among all combinations of flour type and different temperature treatments, cake made from heat-treated cake flour baked at the middle temperature produced the best final cake in terms of a final dome-shape contour, an appreciable volume during baking, less volume shrinkage during baking, and maximum cross-sectional area of the half cake after 1 h cooling.  相似文献   

11.
Imaging, light microscopy and scanning electron microscopy were used to compare the microstructure of crumbs from pound cakes baked in a microwave or conventional oven. The microwave baking conditions for pound cake (240 W, 5 min) were established in previous research, conventional baked pound cakes were obtained using a swing oven at 180 °C for 40 min. Statistical differences in total cell, cell/cm2 and mean cell area (P?0.05) were observed in the image analysis. Cells from microwaved pound cake crumbs were 20% larger. However, factor shape was 0.81 for both microwave and conventionally baked crumbs, and crumbs from both oven types were similar in appearance. Light microscopy revealed birefringence in crumbs from both types of pound cakes. Scanning electron microscopy revealed that the conventionally baked product had a greater amount of protein matrix however; the matrix structure of the crumb was comparable between microwave-baked and conventionally baked pound cakes. In conclusion, our results suggest that the unique aspects of pound cake dough, including its high content of fat, sugar and moisture, make it well suited to microwave baking.  相似文献   

12.
The physicochemical properties and functional characteristics of starch from a high β-glucan waxy barley were compared with those of starches isolated from normal and high amylose barleys. Amylose content of the starches ranged from 1.9 to 34.8%. There was no relationship between amylose content and water binding capacity and gelatinization temperature of the starches. Amylose content and swelling power as well as enzyme susceptibility were negatively correlated. Waxy barley starches had a lower solubility than amylose-containing starches. High amylose barley starch registered no swelling in the Amylograph. Amylose content in starch proved to be very important for good bread- and cake baking quality. Waxy starches did not produce acceptable breads and cakes. The starch from the high β-glucan barley variety “Shonkin” will be suitable as a thickening agent, but not as an ingredient in bakery products.  相似文献   

13.
The effects of combined conventional and microwave oven baked white layer cake characteristics were studied. Two types of commercially milled wheat flour, white (A) and whole wheat (B), were used. The modified white layer cake making method was used for conducting the cake baking trials. The conventional baking times (8 or 11 min), microwave power (400 or 600 W) and microwave baking time (30, 40, or 50 s) were chosen as baking parameters. Conventional baking was applied to form the cake crust before baking with the microwave oven used to form the crumb of the cakes. The performance of combination baking was compared with the performance of conventional baking. The volume, bake loss, internal factors, and crust color of cakes were evaluated as quality characteristics. The bake losses of cakes using the combination of short oven times and low microwave power for selected microwave times were smaller than the bake losses of the control cakes for both flours. Long oven times and low microwave power increased the specific volume of cakes. Cakes baked from flours A and B exhibited similar internal properties. Oven time significantly affected the crust color of cakes made with flour A. The crust color of cakes made with flour B was similar to the crust color of control cakes. Using a combination of conventional and microwave baking produces cakes with qualities equivalent to the qualities of cakes produced with conventional baking.  相似文献   

14.
 Understanding the interactions between sugar, starch, protein and water, which are the main components of a baked product, will advance the development of high quality, microwaveable products. This paper presents a mathematical model describing the quantitative relationships between water, sugar and protein on the gelatinization of wheat starch following 20 s of microwave heat as determined by differential scanning calorimetry. Addition of sugar decreased the degree of gelatinization of starch due to microwave heating significantly. Water and protein were not found to be as significant as sugar in delaying gelatinization. The effects of sugar and protein on the gelatinization of starch were pronounced in water-limited systems. The model could be used to describe systems containing 33–67% water, 0–33% sucrose and 0–5.8% protein, with a coefficient of determination of 0.91. Received: 29 June 1998  相似文献   

15.
There is a growing interest in developing gluten-free bakery products in recent time. In cake making, gluten network formation is not essential, but hardly any information exists about the influence of the gluten-free flour characteristics affecting the final cake product. This study analyses the influence of two different rice cultivars (short and long) with different flour particle size in batter characteristics (specific volume, viscosity and internal structure) and in sponge and layer cake formulas (volume, shape, texture and colour). During starch gelatinization, the finest flours (median particle size finer than 100 μm) increased their viscosity and reached the peak viscosity (RVA) later than the coarsest flours. Moreover, the finest flours gave batters with lower specific volumes but with an air distribution in smaller and uniform bubbles in both formulas. These flours also produced higher volume and lower firmness in sponge cakes and greater symmetry index both in sponge and layer cakes. The rice type also influenced batter and cakes characteristics but in a lesser extent. The different results obtained depending on the rice flour particle size, type flour and cake formulation indicate the need to define them both in industrial specifications and in research studies.  相似文献   

16.
A procedure for extraction of hydroxymethylfurfural (HMF) and furfural from cakes was validated. Higher yield was achieved by multiple step extraction with water/methanol (70/30) and clarification with Carrez I and II reagents. Oven type and baking time strongly influenced HMF, moisture and volatile profile of model cakes, whereas furfural content was not significantly affected. No correlation was found between these parameters. Baking time influenced moisture and HMF formation in cakes from traditional and microwave ovens but not in steam oven cakes. Significant moisture decrease and HMF increase (3.63, 9.32, and 41.9 mg kg−1 dw at 20, 40 and 60 min, respectively) were observed during traditional baking. Cakes baked by microwave also presented a significant increase of HMF (up to 16.84 mg kg−1 dw at 2.5 min). Steam oven cakes possessed the highest moisture content and no significant differences in HMF and furfural. This oven is likely to form low HMF and furfural, maintaining cake moisture and aroma compounds.  相似文献   

17.
 Response surface methodology was used to optimize the formulation of microwave-baked cakes. The independent variables were water content, emulsifier content baking time, oven power, shortening content and starch type. The quality factors evaluated were specific gravity of batter and volume index, uniformity index and tenderness of the crumb. Constraints for quality factors were obtained by conventional baking of American Association of Cereal Chemists high-ratio cake formulation. Multiple contour plots showed the optimum region for various water and shortening combinations at different emulsifier, time and power levels. Cakes formulated with wheat starch, containing 0.3% polysorbate 60, 133.7% water and 45.2% shortening (flour substitute basis), baked for 6 min at 100% power yielded acceptable cakes that can compete with conventionally baked cakes. Rice and corn cakes had lower quality than conventionally baked high-ratio cakes. Power was found to be the most efficient independent variable affecting all the dependent variables. Received: 26 August 1999 / Revised version: 11 October 1999  相似文献   

18.
ABSTRACT: Angel food cakes made from egg white or whey protein foams were compared. Cakes were evaluated based on final volume, dynamic volume change, and rheological transitions during baking. Cake expansion during baking was a function of protein concentration regardless of protein type. Cakes containing whey proteins had a lower ability to prevent collapse once starch gelatinization started during baking. Heat-treating whey proteins or adding xanthan gum increases cake volume, but not to the extent of egg-white proteins. Cakes containing egg-white proteins became more elastic at 60 to 85 °C than those containing whey proteins, indicating physical differences in the heat-set protein foam network associated with protein type.  相似文献   

19.
This study was conducted to investigate the effects of partial replacement of egg white proteins (EWP) with whey protein isolate (WPI) on the appearance, structure, texture, and sensory properties of angel food cakes baked in conventional and microwave/conventional ovens. Factors studied were: 1) replacement of 25% or 50% of EWP with WPI; 2) added xanthan gum (XG), methyl cellulose (MC), cupric sulfate (Cu+2) or sodium phosphate (PHOS); and 3) conventional vs microwave/conventional oven baking. EWP replacement cakes without additives were generally inferior to 100% EWP control cakes, whereas EWP replacement cakes with added XG were most similar to 100% EWP control cakes with respect to appearance, texture, and sensory properties and those with added MC exhibited air cell size distributions that most closely resembled control cakes. The other additives and microwave/ conventional vs conventional baking had minor effects on the quality of EWP replacement cakes.  相似文献   

20.
The fat in a sponge cake formulation was partially replaced (0%, 30%, 50%, and 70%) with OptiSol?5300.This natural functional ingredient derived from flax seeds, rich in fiber and alpha‐linoleic acid, provides a natural substitute for guar and xanthan gums, avoiding E‐numbers on labels. The structure and some physicochemical properties of the formulations were examined, sensory analysis was conducted and changes in starch digestibility due to adding this ingredient were determined. Increasing quantities of OptiSol?5300 gave harder cakes, with less weight loss during baking, without affecting the final cake height. There were no significant differences (P > 0.05) in texture, flavor and overall acceptance between the control and the 30% substitution cake, nor in the rapidly digestible starch values. Consequently, replacing up to 30% of the fat with OptiSol?5300 gives a new product with health benefits and a clean label that resembles the full‐fat sponge cake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号