首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore wear mechanism of stainless steel used in nuclear pump,the wear properties and the worn surface characteristics of unlubricated 304L austenitic stainless steel on itself were investigated in air at room temperature.The experimental results demonstrated that the wear rate of the material decreased with the increase of the wear time.The friction coefficient fluctuated severely when the applied load was 120 N.At 120 N the wear rate was much higher than that of the applied load of 70 N.At 70 N the wear rate did not show much difference from that of 30 N.The wear mechanism was adhesive and abrasive wear under different load at the initial stage of the wear test.Then,the main wear mechanism changed with the wearing time and the applied load.  相似文献   

2.
对20#钢试样进行C-N共渗热处理,经C-N共渗的试样进行干摩擦磨损试验,实验的载荷为2N到6N,滑动速度从8m/s到45m/s.摩擦磨损试验表明在滑动速度为35m/s左右时,发生了从轻微磨损向严重磨损的转变,结合SEM、AES和XPS分析,磨损率的变化与磨损表面的氧化物形成与剥落、氧化物的类型转变(Fe2O3转变成FeO)有密切关系.  相似文献   

3.
High temperature tribological behaviors of nano-diamond as oil additive   总被引:1,自引:0,他引:1  
The tribological behaviors of the nano-diamond particles including the nano-diamond and the nano-diamond modified were studied at high temperature using SRV multifunctional test system. The worn steel surfaces were analyzed by means of X-ray photoelectron spectroscopy (XPS). The results show that nano-diamond particles can obviously improve the antiwear and friction reducing properties of the base oil at high temperature and the high load. The friction coefficient of the nano-diamond is very low at 200 °C when the test load is not more than 20 N. This tribological behaviors should attributed to the similarly to “ball bearing” lubrication action of the nano-diamond particles, so the movement between tribological pairs become sliding/rolling. The nano-diamond modified by dimer ester possesses excellent antiwear and friction reducing performance at 500 °C and load 500 N. The tribochemical reaction film between the nano-diamond particles and the renascent wear surface plays dominating lubrication role and the presence of the dimer ester on the rubbing surface can be propitious to form lubrication film containing nano-diamond on the worn surface at high temperature and high load. Foundation item: Project (51489020605JS9105) supported by National Key Laboratory for Remanufacturing  相似文献   

4.
作者用扫描电子显微镜,电子探针等分析了3Cr2W8V钢高温磨损表面,考察了磨损表面形态随试验温度及试验时间的变化规律,给出了相应的磨损表面特征照片,并结合磨损机理分析了该钢的温度——磨损特性曲线。文中还着重分析了高温磨损时在表面形成的“形成层”的成分、作用及形态,并探讨了磨损表面上沟槽产生的原因。  相似文献   

5.
Two kinds nitride modified layers were obtained on Ti-13Nb-13 Zr surface to improve the wear property via magnetron sputtering and plasma nitriding techniques, respectively. The structures of the modified layer and the worn surface after sliding test were characterized using X-ray diffraction(XRD) and scanning electron microscopy(SEM). The friction and wear behavior of the modified layer against alumina ball was investigated in the absence of lubricant under different loads(1 N and 2 N). The X-ray diffraction analysis reveals that nitride layer is mainly composed of TiN and Ti_2N, while coating film consists of Ti N phase. Friction and wear test indicates that both modified layers can improve the wear resistance compared to untreated Ti-13Nb-13 Zr. Ti N thin film produces very hard surface, but may be easy to cause coating fracture and delamination under high normal load. However, nitride layer exhibits better wear performance. This is attributed to hard compound layer maintained its integrity with the hardened nitrogen diffusion zone during friction and wear process.  相似文献   

6.
Impact wear behaviors of Hadfield manganese steel   总被引:1,自引:0,他引:1  
Impact wear behaviors of Hadfield manganese steel at different impact angles were investigated. The results of impact wear tests show that there exists a critical impact load for Hadfield steel. The wear rate suddenly turns down after some impact cycles when the impact load is greater than the critical load. The critical impact load is smaller than 8.2 J in this research because the nano-sized austenitic grains embedded in amorphous delay the crack propagation in subsurface. From high resolution transmission electron microscope (HRTEM) examination of subsurface microstructure, it is found that a large amount of nano-sized grains embedded in bulk amorphous matrix are fully developed and no martensitic transformation occurs during the impact wear process. The analytical results of worn surface morphology and debris indicate that the initiation of crack, propagation and spalling are restricted in the amorphous phase, resulting in the size distribution of debris in nano-sizes, which is the reason why the wear rate of Hadfield steel is greatly decreased at high impact load.  相似文献   

7.
聚四氟乙烯填充PA1010的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)填充PA1010复合材料,利用M-2000磨损试验机测试了该复合材料与GCr15轴承钢对摩时的摩擦磨损性能,并用扫描电子显微镜(SEM)观察了试样磨损表面形貌.结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能.w(PTFE)为25%时,复合材料的摩擦学综合性能最佳.复合材料的摩擦系数和磨损体积随施加载荷、滑动速度的增加分别呈现降低和增加的趋势.在200 N载荷下,复合材料磨损主要为磨粒磨损;在400 N载荷下,磨损表现为黏着磨损和磨粒磨损共同作用.在滑动速度为0.21 m/s时,材料摩擦表面因挤压发生塑性流变,其磨损机理为磨粒磨损;在滑动速度为0.84 m/s,复合材料因热疲劳和应力疲劳发生剥层,磨损机理转变为疲劳剥层磨损.  相似文献   

8.
对8407模具钢试样进行热浸渗铝,在试样表面形成了Fe—Al合金渗层.对渗铝试样进行高温氧化实验,使渗层表面形成了Fe—Al-O的混合氧化物.考察了渗铝温度和渗铝时间对渗层质量的影响;着重研究了不同氧化气氛下Fe—Al合金表面的氧化情况,确定了最佳高温氧化工艺.结果表明,8407钢热浸镀铝后,在600℃以下、纯O2气氛条件下氧化,Fe—Al合金表面生成了Fe3O4和Al2O的混合物.这层氧化膜与铝液不润湿,能较好地保护试样.因此这种工艺可能是合适的铝合金压铸模表面处理工艺.  相似文献   

9.
在室温、干摩擦(空气)及蒸馏水润滑条件下使用环块磨损试验机进行Al2O3陶瓷和球墨铸铁、灰铸铁及钢配副时的滑动磨损试验.结果表明:蒸馏水润滑下Al2O3及铸铁的磨损体积均小于在干磨擦条件下;在同一润滑条件下,钢的磨损体积大于铸铁磨损体积,球墨铸铁磨损体积最小;陶瓷Al2O3磨损体积在干摩擦时与铸铁配副时比与钢配副时要小得多.对Al2O3磨面进行形貌及能谱分析,发现在干摩擦条件下,Al2O3磨面有大量铸铁或钢的转移物组成的迁移膜,在蒸馏水润滑条件下则没有.分析认为,铸铁中石墨在于摩擦时能起到较明显的固体润滑剂作用,相对地减小了磨损,而在蒸馏水润滑下石墨的润滑作用己大大减弱.  相似文献   

10.
用X-ray衍射和激光共聚焦扫描显微镜对经激光表面熔凝处理的Mg-11Y-2.5Zn合金进行显微组织和相组成分析,并测量改性层硬度变化。研究结果表明,经激光表面熔凝处理后,改性层由熔化区和热影响区组成,熔化区的显微组织明显细化,硬度有所改善。研究了经激光表面处理和铸态Mg-11Y-2.5Zn合金的摩擦学性能,滑移速率为0.785m/s,载荷范围为20~320N。两者的摩擦因子无显著差异,但经激光表面处理的Mg-11Y-2.5Zn合金表现出较低的磨损率,归结于熔凝区的组织细化和硬度增加。SEM磨损表面形貌分析表明,激光表面熔凝处理的合金与未处理合金的磨损机制基本相同,轻微磨损阶段为磨粒磨损和剥层磨损,严重磨损阶段为表面热软化和熔化磨损。  相似文献   

11.
The linear chlorophosphazene oligomers family has been extensively investigated not only as a kind of lubricating additive but also as a kind of heat transfer medium, dielec-tric fluid, high-temperature lubricant, and working fluid usable within a wide range of temperature between the freezing and boiling points[1?4]. Since the 1960s, the U.S. Air Force Materials Laboratory sponsored the development of linear chlorophosphazeneoligomers for high temperature fluids. However, highly polymerized…  相似文献   

12.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

13.
模具钢在硼砂:氯化钡混合熔盐中渗铬的研究   总被引:2,自引:0,他引:2  
研究了在盐浴渗铬工艺中不同Cr2O3与Al的比例以及硼砂和各种氯化盐作为基盐,对T10钢渗铬效果的影响。探讨了硼砂加氯化钡的最佳基盐成分和渗铬最佳工艺参数。分析了模具钢渗铬层的组织结构;测定了渗层厚度和表面硬度;考核了3Cr2W8V钢渗铬层的耐磨性和CrWMn渗铬层的抗高温氧化性。  相似文献   

14.
用不同的渗碳气体对201奥氏体不锈钢进行了低温离子渗碳(DCPC)处理。实验证明,甲烷和乙炔均可在不锈钢表面形成一层无碳化铬析出的碳的过饱和固溶体(Sc相),使其表面的硬度和耐蚀性均有较大幅度的提高。但用甲烷作为渗碳气体处理的不锈钢表面有一层黑膜,破坏了不锈钢原有的光泽;而用乙炔作为渗碳气体不仅可以获得较为光亮的表面色泽,同时其硬度和耐蚀性也有进一步的提高。  相似文献   

15.
研究了加入不同含量的微细铬铁粉对烧结钢干摩擦磨损性能的影响,并借助于扫描电镜观察分析其磨损形貌,探讨摩擦磨损机制。研究结果表明:添加微细铬铁粉可改善烧结钢的强度、硬度和摩擦磨损性能,铬的质量分数为1.5%时,耐磨性最佳。磨损造成一定厚度的塑性变形,硬度较高的材料塑性变形层较薄。磨损早期,磨粒磨损是主导机制,磨损后期,由于塑性变形导致亚表层产生裂纹,进而发生的剥层磨损是主导磨损机制。  相似文献   

16.
激光强化40Cr合金钢表面磨损的实验研究   总被引:3,自引:0,他引:3  
采用CO2激光器在不同的激光强化参数下对40Cr钢进行表面强化,并钭其与热轧Q235钢组成磨擦副,在干摩擦条件下进行摩擦磨损实验,旨在确定合理的激光强化参数,为提高矫直辊耐磨性提供实验依据。通过对实验结果和定量分析提出,激光强化可以提高40Cr钢的耐磨性,采用扫描电镜对激光强化后的40Cr钢表面和磨损表面进行分析,发现激光强化后40Cr钢的金相组织主要是致密的马氏体,而且磨损表面比正常淬火的40Cr钢的表面光滑,仅产生一些微裂纹。  相似文献   

17.
研究了在蒸馏水润滑下Si3N4、Al2O3陶瓷与灰铸铁副的摩擦磨损特性。结果表明:Al2O3陶瓷的磨损体积损失远小于Si3N4的,但灰铸铁与Si3N4配副时的磨损体积损失却大大小于与Al2O3配副时的,其摩擦系数也很小(0.02)。用SEM观察磨损形貌,发现灰铸铁与Si3N4配副时Si3N4磨面极其光滑,与其对应的灰铸铁磨面上存在含石墨的润滑膜。  相似文献   

18.
通过对9SiCr钢表面进行合金激光熔覆处理,在摩擦磨损实验机上对熔覆合金钢与Q235钢配副进行了摩擦磨损性能实验.通过摩擦磨损实验研究了参数如载荷、滑动距离、滑动速度、润滑条件等对Q235钢与熔覆合金钢的磨损量的影响,熔覆合金钢与Q235钢的磨损量与压力和滑动速度成正比.Ni合金钢的耐磨性比Co合金钢要好.通过扫描电镜分析了熔覆合金磨损机理,熔覆合金钢磨损主要以磨粒为主,同时表面存在大量凹坑,而Q235钢以磨粒和塑性变形为主.  相似文献   

19.
The effect ofrare earth(Re)and titanium(Ti)multi-modification on the impact wear behavior of Mn-B high-Si bainitic cast steel was investigated systematically.The experiments show that the impact wear resistance can be improved greatly with the addition of Re and Ti.Its wear loss is only about 1/3-1/2 as large as that of the unmodified bainitic cast steel.By the Re/Ti modification,coarse dendrite grains and bainitic/martensite duplex structure have been refined effectively,and the impact toughness ofthe bainitic cast steel is nearly tripled(10mm×10 mm×55 mm with unnotched sample).Consequently,the modified bauutic cast steel possesses good wear resistance under high impact.For both modified and unmodified bainitic cast steels,high hardness white layer and deformed zone are developed beneath the worn surface under the lugh impact wear,but the formation and propagation of cracks are different for these bainitic casting steels.Different models for the formation and propagation of cracks for both modified and unmodified bairutic cast steels under high impact wear are proposed.  相似文献   

20.
The surface modified nanocopper particles were prepared with chemical reduction method. The wear test was carried out on a T-11 ball-on-plate friction and wear tester made in Poland. The material of the upper sample was GCr15 and the counterpart was AISI-1045 steel. The morphologies of the worn surfaces of the samples were observed by optical microscope and scanning electron microscope, while the element distributions on the worn surfaces were determined by means of electron microprobe analysis. As the results, a film mainly made of Cu is formed on the worn surface. The film on the surface of the still upper sample is thicker than that formed on the revolving coun terpart. At the edge of the groove of the worn surface made by the milling before test there is Cu element observed obviously, but there is not any Cu element in the bottom of the groove. A possible action mechanism of the film is suggested. The friction movement can induce reactivity of the metal and continuously produce activation surface. It benefits the film formed by nano-Cu in lubricant on the worn surface. Hardness and modulus of nano-Cu films were successfully measured and analyzed by the nanoindentation instrument. The results show that the hardness and modulus of the films are lower than those of the initial surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号