首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
研制了一种新型的磁敏传感器和光敏象限传感器兼容的集成电路。该传感器采用0.6μm标准CMOS工艺制造,设计并实现了磁敏传感器、光敏象限传感器及其兼容的信号处理电路的单片集成,并采用有源预处理电路和相关二次采样电路进行磁敏和光敏信号的采集和降噪处理,具有较高的磁场灵敏度(0.0361T-1)感光灵敏度(2V/lx.s),实现了在一个芯片上同时传感磁信号和光信号的功能。  相似文献   

2.
杨成财  鞠国豪  陈永平 《半导体光电》2019,40(3):333-337, 363
PIN光电二极管相对于pn结型光电二极管具有结电容小、量子效率高等优点,但采用标准低压CMOS(LV-CMOS)工艺研制的CMOS传感器只能实现基于n阱/p衬底的pn结光敏元与片上电路的集成,高压CMOS(HV-CMOS)工艺的发展为CMOS电路与PIN光敏元列阵的单片集成提供了可能。基于HV-CMOS工艺设计了一种集成PIN光敏元列阵的CMOS传感器,并对器件的光电响应进行了测试评估。结果表明,集成PIN光敏元的CMOS传感器具有更高的像素增益和量子效率,而暗电流、输出摆幅、线性度等特性保持良好。在500~900nm宽波段范围内,器件的量子效率均达到80%以上,在950nm附近的量子效率达到25%,优于采用其他工艺制作的CMOS传感器。  相似文献   

3.
简要介绍了医用MEMS传感器在物联网应用领域的需求和市场发展趋势。指出MEMS传感器是一种采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。这些特点必须通过新型封装技术的开发才能实现,因而提出开发MEMS传感器特殊封装的必要性。介绍了电子血压计传感器特殊封装产品的研发流程,论述了在开发电子血压计传感器特殊封装过程中必须解决的关键工艺技术。同时还系统介绍了特殊封装产品的结构、电路原理、工艺流程和技术开发过程中影响产品质量的各种因素。最后特别提到,电子血压计的MEMS传感器特殊封装技术虽然有别于传统IC封装工艺技术,但部分流程仍然可以和传统IC塑料封装工艺很好地兼容,这对降低MEMS传感器制造成本具有现实意义。  相似文献   

4.
硅MEMS器件加工技术及展望   总被引:1,自引:0,他引:1  
介绍了几种典型的硅基MEMS加工技术以及应用,并简单展望了MEMS加工技术发展趋势。硅基MEMS加工技术主要包括体硅MEMS加工技术和表面MEMS加工技术。体硅MEMS加工技术的主要特点是对硅衬底材料的深刻蚀,可得到较大纵向尺寸可动微结构,体硅工艺包括湿法SOG(玻璃上硅)工艺、干法SOG工艺、正面体硅工艺、SOI(绝缘体上硅)工艺。表面MEMS加工技术主要通过在硅片上生长氧化硅、氮化硅、多晶硅等多层薄膜来完成MEMS器件的制作,利用表面工艺得到的可动微结构的纵向尺寸较小,但与IC工艺的兼容性更好,易与电路实现单片集成。阐述了这些MEMS加工技术的工艺原理、优缺点、加工精度、应用等。提出了MEMS加工技术的发展趋势,包括MEMS器件圆片级封装(WLP)技术、MEMS工艺标准化、MEMS与CMOS单片平面集成、MEMS器件与其他芯片的3D封装集成技术等。  相似文献   

5.
新型集成阵列四象限CMOS光电传感器的研制   总被引:1,自引:0,他引:1  
周鑫  朱大中 《电子学报》2005,33(5):928-930
本文介绍了一种用于目标跟踪和坐标定位的新型集成阵列四象限CMOS光电传感器.该传感器采用上华0.6 μm标准CMOS工艺制造,实现了象限传感器与后端信号处理电路的单片集成.该传感器由16×16单元有源光电管阵列,相关二次采样电路和时序控制电路组成.每个有源光电管的大小为60 μm ×60 μm,其感光面积百分比(Fill Factor)为64.5%.通过变频二次扫描的工作模式可将传感器的感光动态范围增大为84dB.传感器的感光灵敏度为2V/lx·s,工作速度根据目标照度可在2ms/帧~64ms/帧范围内调整.  相似文献   

6.
顾聚兴 《红外》2006,27(1):44-46,48
用互补金属氧化物半导体(CMOS)的制造方法来生产成像传感器列阵芯片,这种可能性在20世纪80年代末得到了验证。从那时起,以 DRAM成本模型把所有的模拟和数字成像电路都集成在单片上一直是CMOS传感器设计人员梦寐以求的目标。然而,在此期间,CCD器件的制造商不断地减小CCD传感器列阵的尺寸并降低其价格以使CMOS传感器在市场上站不住脚。  相似文献   

7.
设计了一种工作在恒电压模式的、微热板结构的单片集成电阻真空传感器芯片.提出了一种以CMOS集成电路中的介质层与钝化层为结构层、栅多晶硅为牺牲层、第二层多晶硅为加热电阻的微传感器单芯片集成工艺模式,制定了相应的工艺流程.采用0.6μm CMOS数模混合集成电路工艺,结合牺牲层腐蚀技术实现了单片集成真空传感器的加工,测试结果显示该芯片能够测量2~105Pa范围内的气压大小,且输出电压范围可调,验证了单片集成工艺的可行性.  相似文献   

8.
基于硅压阻效应原理,单片集成三轴加速度传感器通过双惯性质量块和六梁结构组成敏感结构,其中四个L型梁对称布置用来测量x和y轴加速度;中间的对称双梁测量z轴加速度。通过工艺兼容技术,在同一芯片上制作出MEMS敏感结构和CMOS信号处理电路。利用ANSYS软件对所设计的结构进行了应力模拟分析,并对产品的加工工艺进行了描述。通过对研制出的单片集成三轴加速度传感器进行性能测试,验证了模拟分析的合理性,最终产品满足设计要求。所研制的产品具有体积小、可靠性高、易于批量生产等优点,可广泛应用于导航系统、汽车工业以及消费电子产品等领域。  相似文献   

9.
MEMSIC公司是一家专攻微机电系统(MEMS)集成电路的半导体公司。该公司设计开发和销售独特的没有移动部件的MEMS加速计。MEMSIC的产品将传感器和相关电子器件集成到了单一芯片上,这种芯片采用标准亚微米CMOS工艺制造,实现的加速计产品不仅成本极其低廉,而且长期工作的可靠性极高,性能也相当高。MEMSIC公司总裁兼CEO赵阳博士告诉记者,以CMOS IC工艺将MEMS惯性传感器和混合信号单芯片集成在一起是一个首创,也是目前惟一的做法。这种技术组合成功地改良了加速计,使其与市场上其他竞争产品相比,成本更低、系统性能更高、功能更…  相似文献   

10.
位于无锡的美新半导体成立于1999年,是全球首家将MEMs和CMOS电路集成于单一芯片的惯性传感器公司。早期通过ADI专利授权发展起来的美新,通过创新拥有多项自主专利。据美新半导体制造工程总监华亚平介绍,美新公司研发出热对流技术,基于自由对流的传递性,器件通过测量由加速度器所引起的内部温度的变化来测量加速度。由于质量块是气体,不存在固有的可移动机械结构,因此能抵抗超过50000g冲击力(传统加速度传感器的5倍)。依靠该专利,美新成为全球第一家提供使用标准CMOS工艺、单芯片、片上集成混合信号处理的热对流MEMS惯性传感器公司。  相似文献   

11.
The integration of microelectromechanical systems (MEMS) switch and control integrated circuit (IC) in a single package was developed for use in next-generation portable wireless systems. This packaged radio-frequency (RF) MEMS switch exhibits an insertion loss under -0.4 dB, and isolation greater than -45 dB. This MEMS switch technology has significantly better RF characteristics than conventional PIN diodes or field effect transistor (FET) switches and consumes less power. The RF MEMS switch chip has been integrated with a high voltage charge pump plus control logic chips into a single package to accommodate the low voltage requirements in portable wireless applications. This paper discusses the package assembly process and critical parameters for integration of MEMS devices and bi-complementary metal oxide semiconductor (CMOS) control integrated circuit (IC) into a single package.  相似文献   

12.
Micromachined thermally based CMOS microsensors   总被引:5,自引:0,他引:5  
An integrated circuit (IC) approach to thermal microsensors is presented. The focus is on thermal sensors with on-chip bias and signal conditioning circuits made by industrial complementary metal-oxide-semiconductor (CMOS) IC technology in combination with post-CMOS micromachining or deposition techniques. CMOS materials and physical effects pertinent to thermal sensors are summarized together with basic structures used for microheaters, thermistors, thermocouples, thermal isolation, and heat sinks. As examples of sensors using temperature measurement, we present micromachined CMOS radiation sensors and thermal converters. Examples for sensors based on thermal actuation include thermal flow and pressure sensors, as well as thermally excited microresonators for position and chemical sensing. We also address sensors for the characterization of process-dependent thermal properties of CMOS materials, such as thermal conductivity, Seebeck coefficient, and heat capacity, whose knowledge is indispensable for thermal sensor design. Last, two complete packaged microsystems-a thermoelectric air-flow sensor and a thermoelectric infrared intrusion detector-are reported as demonstrators  相似文献   

13.
苏适  廖小平 《半导体学报》2009,30(5):054004-4
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43μV/mW, while the reflection loss is below -14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.  相似文献   

14.
利用MEMS技术 ,对一种新型CMOS湿度传感器进行理论分析、模拟以及结果讨论。该湿度传感器采用标准CMOS工艺制造 ,采用梳状铝电极结构、梳状多晶硅加热结构 ,衬底接地 ,感湿介质采用聚酰亚胺 ,利用商业软件Coventor进行模拟绘制出敏感电容与相对湿度的曲线图。接口电路采用开关电容电路 ,输出可测电压信号 ,利用Microsim公司的Pspice模拟电路得到相对湿度与输出电压曲线关系  相似文献   

15.
体硅集成MEMS器件中的一个非常重要的技术就是微结构与电路部分的电隔离和互连。由于体硅工艺与传统CMOS工艺不兼容 ,所以形成高深宽比的深隔离槽 (宽约 3μm ,深 2 0~ 10 0μm)是体硅集成中急待解决的工艺难题。本文采用MEMS微加工的DRIE (DeepReactiveIonEtching)技术、热氧化技术和多晶硅填充技术 ,形成了高深宽比的深电隔离槽 (宽 3.6 μm ,深 85μm)。还提出了一种改变深槽形状的方法 ,使深槽的开口变大 ,以利于多晶硅的填充 ,避免了空洞的产生  相似文献   

16.
An uncooled microbolometer image sensor, used in an IR image sensor, is made by a micro electro mechanical systems (MEMS) process, so the value of the microbolometer resistor has a process variation. Also, the reference resistor, which is used to connect to the microbolometer, is fabricated by a standard CMOS process, and the difference between the values of the microbolometer resistor and the reference resistor generates an unwanted output signal for the same input from the sensor array. In order to minimize this problem, a new CMOS read-out integrated circuit (ROIC) was designed. Instead of a single input mode, a differential input mode scheme and a simple method to compensate the resistor value are proposed. Using results from a computer simulation, it is observed that the output characteristic of the ROIC was improved and the effect of the process variation was decreased without using complex compensation circuits. Based on the simulation results, a prototype device including an ROIC that was fabricated by a standard 0.25um CMOS process and a microbolometer with a 16 x 16 sensor array was fabricated and characterized.  相似文献   

17.
This paper presents the modeling, fabrication, and measurement of a capacitive membrane MEMS microwave power sensor. The sensor measures microwave power coupled from coplanar waveguide (CPW) transmission lines by a MEMS membrane and then converts it into a DC voltage output by using thermopiles. Since the fabrication process is fully compatible with the GaAs monolithic microwave integrated circuit (MMIC) process, this sensor could be conveniently embedded into MMIC. From the measured DC voltage output and S-parameters, the average sensitivity in the X-band is 225.43 μV/mW, while the reflection loss is below-14 dB. The MEMS microwave power sensor has good linearity with a voltage standing wave ration of less than 1.513 in the whole X-band. In addition, the measurements using amplitude modulation signals prove that the modulation index directly influences the output DC voltage.  相似文献   

18.
This paper reports on the design solutions and the different measurements we have done in order to characterize the thermal coupling and the performance of differential temperature sensors embedded in an integrated circuit implemented in a 65 nm CMOS technology. The on-chip temperature increases have been generated using diode-connected MOS transistors behaving as heat sources. Temperature measurements performed with the embedded sensor are corroborated with an infra-red camera and a laser interferometer used as thermometer. A 2 GHz linear power amplifier (PA) is as well embedded in the same silicon die. In this paper we show that temperature measurements performed with the embedded temperature sensor can be used to monitor the PA DC behavior and RF activity.  相似文献   

19.
给出了一种用于MEMS惯性器件的低噪声读出电路设计,针对MEMS惯性器件大多采用电容量输出等特点,设计了一个低噪声运算放大器,利用该运放,设计了一种基于开关电容的电荷转移电路来将电容量转换为电压量,以便后续电路处理.采用了相关双采样(CDS)技术,较大地减少了电路和MEMS惯性器件的1/f噪声、热噪声,抑制了零漂.采用HHNEC 0.35 μmCMOS工艺制造,面积为1 mm×2 mm,与MEMS器件封装在一起,并进行了实际测试,结果表明,该读出电路基本满足要求,并具有较低的噪声.  相似文献   

20.
An efficient driving method for a high-voltage CMOS driver integrated circuit (IC) is proposed. It utilises an auxiliary circuit to reduce the voltage across the data driver IC when its output stages change their status. The auxiliary circuit can reduce the power consumption and relieve the thermal problems of the driver ICs. Moreover, it has load adaptive characteristics. Power consumption was reduced by 46% at one dot on/off image pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号