首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

2.
A series of temperature‐ and pH‐responsive hydrogels were prepared from acrylic acid (AAc), acrylamide (AAm), oligo(ethylene glycol)monoacrylate (OEGMA), and oligo(ethylene glycol)diacrylate by varying the AAc:AAm molar ratio and the OEGMA content. Phase‐transition temperatures and swelling ratios of the obtained poly(AAc‐co‐AAm)‐graft‐OEG gels were measured as a function of temperature and pH. At pH < 5, the obvious transition temperatures ranging from 5 to 35°C were obtained as the AAc : AAm molar ratio was varied. The highest transition temperature was obtained at the AAc : AAm ratios of 5 : 5 and 6 : 4, and the sharp transition curves were observed at the AAc : AAm ratios from 5 : 5 to 8 : 2. The transition temperature further increased with increasing OEGMA content. It was suggested that OEG graft chains with a large mobility played an important role for the formation of hydrogen bonding in the hydrogels. The gels prepared here showed obvious reproducibility of the phase transition in response to temperature changes, which suggests the feasibility of their practical applications. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 798–805, 2001  相似文献   

3.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Poly(N‐isopropyl acrylamide) (PNIPAAm)‐graft‐poly(ethylene oxide) (PEO) hydrogels crosslinked by poly(?‐caprolactone) diacrylate were prepared, and their microstructures were investigated. The swelling/deswelling kinetics and compression strength were measured. The relationship between the structure and properties of hydrogel are discussed. It was found that the PEO comb‐type grafted structure reduced the thermosensitivity and increased the compression strength. The addition of poly(?‐caprolactone) (PCL) accelerated the deswelling rate of the hydrogels. Meanwhile, the entanglement of PCL chains restrained the further swelling of the network of gels. The PCL crosslinking agent and PEO comb‐type grafted structure made the behavior of the hydrogels deviate from the rubber elasticity equations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Temperature‐sensitive poly[(2‐diethylaminoethyl methacrylate)‐co‐(N,N‐dimethylacrylamide)] [P(DEAEMA‐co‐DMAAm)] hydrogels with five different DMAAm contents were synthesized with and without the addition of sodium carbonate as porosity generator. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observation and the determination of swelling ratio. The influence of the pore‐forming agent and content of DMAAm on swelling ratio and network parameters such as polymer–solvent interaction parameter (χ), average molecular mass between crosslinks (M?c) and mesh size (ζ) of the cryogels are reported and discussed. The swelling and deswelling rates of the porous hydrogels are much faster than for the same type of hydrogels prepared via conventional methods. At a temperature below the volume phase transition temperature, the macroporous hydrogels also absorbed larger amounts water compared to that of conventional hydrogels and showed obviously higher equilibrated swelling ratios in aqueous medium. In particular, the unique macroporous structure provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling and swelling processes. These properties are attributed to the macroporous and regularly arranged network of the porous hydrogels. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying porosity generation methods during the polymerization reaction. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
Macroporous superabsorbent hydrogels (SAHs) composed of acrylamide (AAm) and sodium methacrylate (NMA) were prepared by aqueous solution polymerization in the presence of a glucose solution. Their swelling capacity was investigated as a function of the concentrations of the glucose solution, sodium methacrylate, crosslinker, initiator, and activator. The porosity of the poly(acrylamide‐co‐sodium methacrylate) superabsorbent hydrogels was confirmed using scanning electron microscopy. The SAHs were characterized by IR spectroscopy. To estimate the effect on the swelling behavior, three types of crosslinkers were employed: N,N′‐methylenebisacrylamide, 1,4‐butanediol diacrylate, and diallyl phthalate. Network structural parameters such as initial swelling rate, swelling rate constant, and maximum equilibrium swelling were evaluated by water absorption measurement. The equilibrium water content (EWC%) of the AAm–NMA macroporous SAHs was found to be in the range of 93.31–99.68, indicating that these SAHs may have applications as biomaterials in the medicinal, pharmaceutical, and veterinary fields. Most of the SAHs prepared in this investigation followed non‐Fickian‐type diffusion, and few followed a case II– or super–case II‐type diffusion. The diffusion coefficients of these macroporous SAHs were investigated. Further, the swelling behavior of these SAHs also was investigated at different pHs and in different salt solutions and simulated biological fluids. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3202–3214, 2006  相似文献   

8.
The synthesis of two low molecular weight linear unsaturated oligoester precursors, poly(propylene fumarate‐co‐sebacate) (PPFS) and poly(ethylene fumarate‐co‐sebacate) (PEFS), are described. PPFS, PEFS, and poly(ethylene glycol) are then used to prepare poly(propylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PPFS‐co‐PEG) and poly(ethylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PEFS‐co‐PEG) block copolymers. The products thus obtained are investigated in terms of the molecular weight, composition, structure, thermal properties, and solubility behavior. A number of design parameters including the molecular weights of PPFS, PEFS, and PEG, the reaction time in the polymer synthesis, and the weight ratio of PEG to PPFS or to PEFS are varied to assess their effects on the product yield and properties. The hydrolytic degradation of PPFS‐co‐PEG and PEFS‐co‐PEG in an isotonic buffer (pH 7.4, 37°C) is investigated, and it is found that the fumarate ester bond cleaves faster than does the sebacate ester bond. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 295–300, 2004  相似文献   

9.
Hydrogels that can undergo gelation upon injection in vivo are promising systems for the site‐specific delivery of drugs. In particular, some thermo‐responsive gels require no chemical additives but simply gel in response to a change from a lower temperature to physiological temperature (37 °C). The gelation mechanism does not involve covalent bonds, and it is possible that incorporation of drugs into the hydrogel could disrupt gelation. We investigated the incorporation of drugs into thermo‐responsive hydrogels based on poly(?‐caprolactone‐co‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(?‐caprolactone‐co‐lactide) (PCLA–PEG–PCLA). Significant differences in properties and in the response to incorporation of the anti‐inflammatory drug celecoxib (CXB) were observed as the PEG block length was varied from 1500 to 3000 g mol?1. Linear viscoelastic moduli of a PCLA–PEG–PCLA hydrogel containing a 2000 g mol?1 PEG block were least affected by the incorporation of CXB and this gel also exhibited the slowest release of CXB, so the incorporation of phenylbutazone, methotrexate, ibuprofen, diclofenac and etodolac was also investigated for this hydrogel. Different drugs resulted in varying degrees of syneresis of the hydrogels, suggesting that they interact with the polymer networks in different ways. In addition, the drugs had varying effects on the viscoelastic and compressive moduli of the gels. The results showed that the effects of drug loading on the properties of thermo‐responsive hydrogels can be substantial and depend on the drug. For applications such as intra‐articular drug delivery, in which the mechanical properties of the hydrogel are important, these effects should thus be studied on a case‐by‐case basis. © 2019 Society of Chemical Industry  相似文献   

10.
The grafting of a poly(ethylene glycol) diacrylate macromer onto a chitosan backbone was carried out with different macromer concentrations. The grafting was achieved by (NH4)2Ce(NO3)6‐induced free‐radical poly merization. Biodegradable, pH‐ and thermally responsive hydrogels of poly(ethylene glycol)‐g‐chitosan crosslinked with a lower amount of glutaraldehyde were prepared for controlled drug release studies. Both the graft copolymers and the hydrogels were characterized with Fourier transform infrared, elemental analysis, and scanning electron microscopy. The obtained hydrogels were subjected to equilibrium swelling studies at different temperatures (25, 37, and 45°C) in buffer solutions of pHs 2.1 and 7.4 (similar to those of gastric and intestinal fluids, respectively). 5‐Fluorouracil was entrapped in these hydrogels, and equilibrium swelling studies were carried out for the drug‐entrapped gels at pHs 2.1 and 7.4 and 37°C. The in vitro release profile of the drug was established at 37°C and pHs 2.1 and 7.4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 977–985, 2006  相似文献   

11.
In this work, a biodegradable and injectable in situ gel‐forming controlled drug delivery system based on thermosensitive poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) hydrogels was studied. A series of PCL‐PEG‐PCL triblock copolymers were synthesized and characterized by 1H‐NMR and gel permeation chromatography (GPC). Thermosensitivity of the PCL‐PEG‐PCL triblock copolymers was tested using the tube inversion method. The in vitro release behaviors of two model proteins, including bovine serum albumin (BSA) and horseradish peroxidase (HRP), from PCL‐PEG‐PCL hydrogels were studied in detail. The in vivo gel formation and degradation of the PCL‐PEG‐PCL triblock copolymers were also investigated in this study. The results showed that aqueous solutions of the synthesized PCL‐PEG‐PCL copolymers can form in situ gel rapidly after injection under physiological conditions. The PCL‐PEG‐PCL hydrogels showed the ability to control the release of incorporated BSA and HRP. The released HRP was confirmed to conserve its biological activity by specific enzymatic activity assay. The in vivo gel formation and degradation studies indicated that PCL‐PEG‐PCL copolymers hydrogels can sustain at least 45 days by subcutaneous injection. Therefore, owing to great thermosensitivity and biodegradability of these copolymers, PCL‐PEG‐PCL copolymers hydrogels show promise as an in situ gel‐forming controlled drug delivery system for therapeutic proteins. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
A series of intelligent hydrogels (poly(NIPA‐co‐GMA‐Dex)) were synthesized by copolymerization of N‐isopropylacrylamide (NIPA) and glycidyl methacrylate derivatized dextran (GMA‐Dex) in aqueous solution with different ratios. Their swelling behaviors at different temperatures and in different pH and ionic strengths, and their mechanical properties were studied. It has found that poly(NIPA‐co‐GMA‐Dex) hydrogels are temperature‐, pH‐, and ionic strength‐sensitive associated with the roles of the component PNIPA and GMA‐Dex, respectively. Most significantly, poly (NIPA‐co‐GMA‐Dex) hydrogels exhibit simultaneously good swelling properties and mechanical properties. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2435–2439, 2005  相似文献   

13.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Poly(acrylamide‐co‐itaconic acid) (PAAmIA) and poly(acrylic acid‐co‐itaconic acid) (PAAIA) copolymeric hydrogels were prepared with different compositions via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used as an original crosslinker for these monomers. Gelation percentages of the monomers were studied in detail and it was found that addition of IA into the monomer mixture decreased the gelation percentage. The variation in swelling values (%) with time, temperature, and pH was determined for all hydrogels. PAA, which is the most swollen hydrogel, has the swelling percentage value of 2000% at pH = 7.4, 37°C. Swelling behaviors were explained with detailed SEM micrographs, which show the morphologic differences between dry and swollen hydrogels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5994–5999, 2006  相似文献   

15.
Poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels were synthesized using gamma‐radiation‐initiated polymerization. The progress of copolymerization and crosslinking was observed by viscosity measurement on reaction mixtures subjected to varying radiation doses. The copolymer gels were characterized by differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, infrared spectroscopy, and elemental analysis. The swelling behavior and other properties of the gels were found to be very similar to those of poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels synthesized using conventional free‐radical initiation in the presence of crosslinkers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1322–1330, 2003  相似文献   

16.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
Intra‐articular drug delivery is the preferred approach for targeting pharmacologic treatment directly at the joints to reduce undesirable side effects associated with systemic drug delivery. In this study, a controlled delivery system of methotrexate (MTX) based on injectable thermosensitive poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone) (PCL‐PEG‐PCL, PEP) hydrogels was developed for the intra‐articular drug delivery. The thermosensitive PEP copolymers were prepared by ring‐opening polymerization. The synthesized PEP copolymers were characterized for their structure, composition, and the sol‐to‐gel transition. The in vitro MTX release from the PEP hydrogels was studied. MTX plasma concentration following intra‐articular injection into healthy rats was determined by HPLC. Biocompatibility was confirmed by histology analysis after the intra‐articular injection. The synthesized PEP copolymers aqueous solutions formed in situ gel rapidly after the injection. PEP hydrogels showed the ability to control the release of incorporated MTX. Following intra‐articular injection, the PEP hydrogels decreased the clearance rate of MTX in the joint cavity. The maximum plasma concentrations of MTX in rats injected with free MTX were threefold higher than that of the groups injected with MTX hydrogels. These results suggest that the intra‐articular delivery of the PEP hydrogels may be a viable strategy for the controlled release of drugs for treating arthritis diseases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A pH‐sensitive composite hydrogel based on poly(acrylamide‐co‐acrylic acid)/graphite was prepared by solution polymerization process in presence of redox initiator potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine and cross‐linker (ethylene glycol dimethylacrylate). The structures of the hydrogels were confirmed using Fourier transform infrared, X‐ray diffraction, and scanning electron microscopy (SEM) study. Tensile strengths of the hydrogels were determined by using a universal tensile machine, whereas the electrical conductivities of the hydrogels were evaluated using Four‐probe method. The influence of cross‐linker, graphite content, and temperature on the conductivity of the hydrogel was also investigated. The bending behavior of the conducting hydrogels was investigated by exposing the hydrogels under electric field in aqueous medium. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. Also, the hemolytic potentiality test revealed that prepared hydrogels are biocompatible in nature. POLYM. COMPOS., 35:27–36, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号