首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Transient flow during nominally steady conditions is responsible for many intermittent defects during the continuous casting of steel. The double-ruler electromagnetic field configuration, or “FC-Mold EMBr,” is popular in commercial slab casting as it provides independent control of the applied static field near the jet and free surface regions of the mold. In the current study, transient flow in a typical commercial caster is simulated in the absence and in the presence of a double-ruler magnetic field, with rulers of equal strengths. Large eddy simulations with the in-house code CU-FLOW resolve the important transient behavior, using grids of over five million cells with a fast parallel solver. In the absence of a magnetic field, a double-roll pattern is observed, with transient unbalanced behavior, high surface velocities (~0.5 m/s), surface vortex formation, and very large surface-level fluctuations (~±12 mm). Applying the magnetic field suppresses the unbalanced behavior, producing a more complex mold flow pattern, but with much lower surface velocities (~0.1 m/s), and a flat surface level with small level fluctuations (<±1 mm). Nail board measurements taken at this commercial caster, in the absence of the field, matched reasonably well with the calculated results, both quantitatively and qualitatively.  相似文献   

2.
Computational fluid dynamics (CFD) model with magneto hydro dynamics (MHD) is developed for a thin slab caster to investigate the effects of electromagnetic brake (EMBr) on liquid steel flow in continuous casting mold and to determine the EMBr practices which lead to optimal flow structure. Particle Image Velocimetry (PIV) tests in water model and meniscus flow measurements in real caster are performed to validate the predictions obtained with CFD models. The performance of different submerged entry nozzle designs, SEN 1 and SEN 2, are evaluated. The effects of nozzle submergence in relation to the applied magnetic field on mold flow structure are quantified. There are significant differences between flow structures obtained with SEN 1 and SEN 2, even though both designs have fundamental similarities and contain four ports. EMBr mainly reduces the meniscus velocities for SEN 2 as opposed to the foremost influence of EMBr for SEN 1 that is to significantly slow down the downward jet coming from the bottom ports. In addition, reducing the EMBr strength for shallow nozzle submergence and increasing the EMBr strength for deep nozzle submergence help to maintain similar meniscus activity for all conditions.  相似文献   

3.
Transient turbulent flow in the mold region during continuous casting of steel is related to many quality problems, such as surface defects and slag entrainment. This work applies an efficient multi-GPU based code, CUFlow, to perform large eddy simulations (LES) of the turbulent flow in a domain that includes the slide gate, SEN, and mold region. The computations were first validated by comparing the predicted surface velocity with plant measurements. Then, seven LES simulations were conducted to study the effects of casting speed, electromagnetic braking (EMBr) field strength, and submerged entry nozzle (SEN) depth on the transient flow. The results show that EMBr has an important influence on flow inside the SEN, in addition to flow in the mold. With EMBr, an “M-shaped” flow profile is seen inside the SEN. The swirling flow behavior in the SEN and ports is more symmetrical at high casting speed and with higher EMBr strength. The position of the SEN ports relative to the peak magnetic field affects the EMBr performance. The results confirm and quantify how applying EMBr greatly lowers both the magnitude and turbulent variations of the surface velocity and level profile.  相似文献   

4.
The influence of mold curvature, slide gate and magnetic forces on the steel flow in a slab mold was studied with a 3‐D mathematical model. The slide gate application induces a biased flow toward the mold side where its opening is located in the submerged entry nozzle (SEN). Turbulence and asymmetry of flows are more intense in a curved mold than in a straight mold. The effect of an electromagnetic brake (EMBr), located in the discharging ports to control flow turbulence, is only appreciable when magnetic flux density is higher than 0.1 T. The magnetic flux density does not affect the velocity profile in the discharging ports in the SEN because its construction material is insulated. Increasing the magnetic flux density leads to a decrease of the discharging jets angle and to the elimination of the two upper roll flows. The use of the EMBr in a curved mold equipped with a slide gate eliminates the meniscus velocity spikes observed in the mold corners. These results help to demonstrate that EMBr eliminates the asymmetry in a curved mold even under the excessive turbulent conditions existing in curved continuous casting molds.  相似文献   

5.
徐绵广  刘和平  项利  仇圣桃 《钢铁》2014,49(1):28-33
 建立了描述电磁制动(EMBr)下CSP漏斗形结晶器开浇过程暂态流动现象的三维数学模型,研究不同磁场强度对开浇过程中结晶器内流场影响。利用流体体积方法(VOF)捕捉钢液-空气界面。采用动网格模型实现引锭杆的移动。研究结果表明:电磁场可显著抑制钢液湍流流动,降低引锭杆启动瞬间的弯月面波动;开浇过程电磁制动的使用可改善拉坯过程中结晶器内钢液流态;电磁制动的使用可将自由稳定时间提前约10s;使用电磁制动可明显减轻漏斗形结晶器内钢液偏流现象。  相似文献   

6.
The turbulent flow of molten steel and the superheat transport in the mold region of a continuous caster of thin steel slabs are investigated with transient large-eddy simulations and plant experiments. The predicted fluid velocities matched measurements taken from dye-injection experiments on full-scale water models of the process. The corresponding predicted temperatures matched measurements by thermocouples lowered into the molten steel during continuous casting. The classic double-roll flow pattern is confirmed for this 132×984 mm slab caster at a 1.52 m/min casting speed, with about 85 pct of the single-phase flow leaving the two side ports of the three-port nozzle. The temperature in the top portion of the molten pool dropped to about 30 pct of the superheat-temperature difference entering the mold of 58 °C. About 12 pct of the superheat is extracted at the narrow face, where the peak heat flux averages almost 750 kW/m2 and the instantaneous peaks exceed 1500 kW/m2. Two-thirds of the superheat is removed in the mold. The jets exiting the nozzle ports exhibit chaotic variations, producing temperature fluctuations in the upper liquid pool of ±4 °C and peak heat-flux variations of±350 kW/m2. Employing a static-k subgrid-scale (SGS) model into the three-dimensional (3-D) finite-volume code had little effect on the solution.  相似文献   

7.
In the current study, a three-dimensinal (3D) numerical model is built to investigate the effect of a local-type electromagnetic brake (EMBr) on the fluid flow, heat transfer, and inclusion motion in slab continuous casting strands. The results indicate that the magnetic force affects the jet characteristics, including jet angle, turbulent kinetic energy, and its dissipation rate. To reduce the top surface velocity and stabilize the top surface, the magnetic flux intensity should be larger than a critical value. With a 0.39 T magnetic flux intensity, the top surface velocity and its fluctuation can be well controlled, and less slag is entrained. The motion of argon bubbles is also studied. More bubbles, especially >2.0-mm bubbles, escape from the top surface between the mold submerged entry nozzle (SEN) and \frac14 \frac{1}{4} width for the case with a 0.39 T EMBr. This may push the top slag away and create an open “eye” on the top slag. Small bubbles (≤1 mm) tend to escape from one side of wide face no matter with or without EMBr, which is induced by the swirl flow from the SEN outport. EMBr has a little effect on the overall removal fraction of inclusions; however, it affects the local distribution of inclusion in the slab. With EMBr, more inclusions accumulate the region just below the surface, thus a worse subsurface quality, whereas the inner quality of the slab is better than that without EMBr. For heat transfer in the mold, the heat flux on the narrow face and the area of possible break-out zones can be reduced by using EMBr. Prevention of bias flow and/or asymmetrical flow in mold by EMBr is also concluded.  相似文献   

8.
Static electromagnetic braking (EMBr) fields affect greatly the turbulent flow pattern in steel continuous casting, which leads to potential benefits such as decreasing flow instability, surface defects, and inclusion entrapment if applied correctly. To gain a fundamental understanding of how EMBr affects transient turbulent flow, the current work applies large eddy simulations (LES) to investigate the effect of three EMBr ruler brake configurations on transient turbulent flow through the bifurcated nozzle and mold of a liquid-metal GaInSn model of a typical steel slab-casting process, but with deep nozzle submergence and insulated walls with no solidifying shell. The LES calculations are performed using an in-house graphic-processing-unit-based computational-fluid-dynamics code (LES-CU-FLOW) on a mesh of ~7?million brick cells. The LES model is validated first via ultrasonic velocimetry measurements in this system. It is then applied to quantify the mean and instantaneous flow structures, Reynolds stresses, turbulent kinetic energy and its budgets, and proper orthogonal modes of four cases. Positioning the strongest part of the ruler magnetic field over the nozzle bottom suppresses turbulence in this region, thus reducing nozzle well swirl and its alternation. This process leads to strong and focused jets entering the mold cavity making large-scale and low-frequency (<0.02?Hz) flow variations in the mold with detrimental surface velocity variations. Lowering the ruler below nozzle deflects the jets upward, leading to faster surface velocities than the other cases. The double-ruler and no-EMBr cases have the most stable flow. The magnetic field generates large-scale vortical structures tending toward two-dimensional (2-D) turbulence. To avoid detrimental large-scale, low-frequency flow variations, it is recommended to avoid strong magnetic fields across the nozzle well and port regions.  相似文献   

9.
10.
A three-dimensional mathematical model of the magnetic field, flow field, and temperature field in a 1500 mm × 90 mm CSP funnel-type mold is used to numerically study the effect of an electromagnetic brake (EMBr) on flow and heat transfer behavior of molten steel. A number of effects of EMBr on the flow pattern and temperature distribution of molten steel are simulated. The jet flow discharge from the submerged entry nozzle (SEN) is significantly suppressed. In addition, heat transfer in the upper part of the mold increases under the influence of EMBr, which can improve the mobility of liquid steel at the meniscus and achieve low superheat casting. The relations between casting speed and magnetic flux density, and between SEN submergence depth and the installation position of the EMBr device, are taken into account to study the effects of braking on molten steel. The results show that the braking effect is weakened with an increase in either the casting speed or the SEN submergence depth. In order to insure the efficient and stable operation of a continuous casting production, the magnetic flux density should be increased by approximately 0.1 T when the casting speed increases by 1 m/min. In addition, an optimal braking effect for molten steel can be obtained when the distance between the bottom of the nozzle and the upper surface of the EMBr device is 100 mm.  相似文献   

11.
采用薄板坯连铸生产高表面质量冷轧钢板的可行性分析   总被引:12,自引:0,他引:12  
王新华 《钢铁》2004,39(12):18-25
薄板坯连铸由于拉速高,结晶器容量小,结晶器钢水液面波动高度和表面流速显著高于传统连铸,因此容易造成保护渣卷渣,这是薄板坯连铸生产高表面质量冷轧钢板钢种的主要困难所在。NUCOR、蒂森一克鲁伯等企业采用薄板坯连铸连轧工艺生产冷轧钢板的实践也表明,在表面质量方面与传统工艺产品尚有较大的差距。采用薄板坯连铸工艺生产优质冷轧钢种,应适当增加铸坯厚度,以降低拉速和增加结晶器对钢水流的缓冲作用,可采用120mm厚铸坯(结晶器出口),3m/min左右拉速。为了减少结晶器保护渣卷渣,应对中等厚度薄板坯连铸结晶器内钢水流动控制(SEN结构参数、SEN浸入深度、拉速等)、电磁制动、保护渣等开展深入的试验研究。  相似文献   

12.
This study aims to propose suitable simulation methods, which enable to reduce the major differences between water model and real caster, such as the gradually decreased flow space, flow mass in the casting direction, and the momentum decay in the mushy zone. With consideration of solidified process, the method is concerned with the change of flow space and flow mass at the casting direction in water model. The level fluctuations, stimulus–response curves, velocities of liquid surface, and distributions of liquid slag have been changed in the water model to study the differences of flow character and the variation of fluid flow in molds. The mold with a solidified shell leads to significant differences in flow behaviors, such as higher level fluctuations, higher surface velocities, and worse liquid slag distributions. Neglecting the solidified shell causes unrealistic lower surface velocities and level fluctuations in water model. The mold with consideration of flow mass balance has higher level fluctuations and surface velocities than the mold without shell, and has lower level fluctuations and surface velocities than that of mold with a shell. The results indicate that it is necessary for water model to take the solidified process into account to acquire more accurate and reliable experiment results, especially for thinner slab.  相似文献   

13.
以某钢厂宽板坯连铸结晶器为研究对象,利用商业软件PHOENICS建立一个三维有限差分模型,模拟宽板坯连铸结晶器内钢液的流动分布.通过分析水口底型、倾角、插入深度等工艺参数对钢液面波动、流股对结晶器窄面的冲击力及涡心高度的影响,得出适用于宽规格结晶器的合理的浸入式水口.通过研究,为优化宽板坯结晶器内钢液的流场及浸入式水口的设计提供了科学依据.  相似文献   

14.
This study is to investigate the effect of electromagnetic brake (EMBr) on fluid flow and particle motion in steel slab continuous casting strands. The effect of slide gate moving on fluid flow pattern was discussed. A strong swirl and asymmetrical flow at the outports and, subsequently, inside the slab mold, was induced by slide gate. The application of EMBr would be a remedy to the swirl flow in the casting mold. Flow pattern has great influence on the trajectories of injected bubbles and nonmetallic inclusions. More bubbles tend to release from the top surface near the wide face opposite to the gate opening side without EMBr; while, they escape at the center place of the slab thickness when the EMBr was applied. Local brake type EMBr has a little effect on the overall removal fraction of nonmetallic inclusions, especially for the small ones. However, EMBr affects the distribution of inclusions on the cross section of the slab, and more inclusions were observed in the sub‐surface layer of the slab.  相似文献   

15.
This article describes experiments on the combined determination of the distribution of liquid metal and argon in the submerged entry nozzle (SEN) and of the flow in the mold of a small-scale physical model of a continuous slab caster. For visualizing the metal distribution in the SEN, mutual inductance tomography (MIT) is applied, while the flow in the mold is determined by contactless inductive flow tomography (CIFT). The results of the latter are validated in part by ultrasonic Doppler velocimetry (UDV). Accompanying measurements provide information about the levels in the tundish and in the mold, as well as on the pressure in the SEN. Depending on the gas flow rate, various flow regimes are identified, among them pressure and mold level oscillations, transitions between double and single vortex flows, and transient single port ejections.  相似文献   

16.
徐绵广  刘和平  仇圣桃  项利 《钢铁》2013,48(10):28-35
 铸坯尺寸是影响电磁制动效果的重要因素。以某钢厂薄板坯CSP漏斗形结晶器为研究对象,建立了描述CSP漏斗形结晶器电磁制动的三维数学模型,研究宽度对电磁制动效果的影响。研究表明:3种铸坯宽度下,电磁制动均可使涡心位置上移并降低下部漩涡范围;电磁制动可降低自由液面水平方向流速,抑制弯月面波动,提高弯月面温度;在结晶器出口处,使用电磁制动可使铸坯宽面坯壳厚度更均匀并提高窄边凝固坯壳厚度;随铸坯宽度增加,电磁制动效果变得不明显。  相似文献   

17.
Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle. Three large-eddy simulations (LES) have been validated with measurements and used to compare results between full-pool and symmetric half-pool domains and between a full-scale water model and actual behavior in a thin-slab steel caster. First, time-dependent turbulent flow in the submerged nozzle is computed. The time-dependent velocities exiting the nozzle ports are then used as inlet conditions for the flow in the liquid pool. Complex time-varying flow structures are observed in the simulation results, in spite of the nominally steady casting conditions. Flow in the mold region is seen to switch between a “double-roll” recirculation zone and a complex flow pattern with multiple vortices. The computed time-averaged flow pattern agrees well with measurements obtained by hot-wire anemometry and dye injection in full-scale water models. Full-pool simulations show asymmetries between the left and right sides of the flow, especially in the lower recirculation zone. These asymmetries, caused by interactions between two halves of the liquid pool, are not present in the half-pool simulation. This work also quantifies differences between flow in the water model and the corresponding steel caster. The top-surface liquid profile and fluctuations are predicted in both systems and agree favorably with measurements. The flow field in the water model is predicted to differ from that in the steel caster in having higher upward velocities in the lower-mold region and a more uniform top-surface liquid profile. A spectral analysis of the computed velocities shows characteristics similar to previous measurements. The flow results presented here are later used (in Part II of this article) to investigate the transport of inclusion particles.  相似文献   

18.
以承德钢铁厂板坯连铸结晶器为原型,采用1∶1的水模型进行试验,研究了拉速、浸入式水口出口角度、水口浸入深度、水口底面结构及结晶器断面宽度等工艺参数对板坯结晶器内表面流速的影响。结果表明:拉速对表面流速的影响最大,随着拉速的提高,结晶器内钢液表面流速明显增大,当断面宽度为1 650 mm,拉速由0.7 m/min提高到1.4 m/min,表面流速由0.04 m/s提高到0.1 m/s;波浪面结构的浸入式水口表面流速效果最优。  相似文献   

19.
Computational modeling is an important tool to understand and stabilize transient turbulent fluid flow in the continuous casting of steel to minimize defects. The current work combines the predictions of two steady Reynolds-averaged Navier–Stokes (RANS) models, a “filtered” unsteady RANS model, and two large eddy simulation (LES) models with ultrasonic Doppler velocimetry (UDV) measurements in a small-scale liquid GaInSn model of the continuous casting mold region fed by a bifurcated well-bottom nozzle with horizontal ports. Both mean and transient features of the turbulent flow are investigated. LES outperformed all models while matching the measurements, except in locations where measurement problems are suspected. The LES model also captured high-frequency fluctuations, which the measurements could not detect. Steady RANS models were the least accurate methods. Turbulent velocity variation frequencies and energies decreased with distance from the nozzle port regions. Proper orthogonal decomposition analysis, instantaneous velocity patterns, and Reynolds stresses reveal that velocity fluctuations and flow structures associated with the alternating-direction swirl in the nozzle bottom lead to a wobbling jet exiting the ports into the mold. These turbulent flow structures are responsible for patterns observed in both the time average flow and the statistics of their fluctuations.  相似文献   

20.
Single-phase turbulent flow in a 0.4-scale water model of a continuous steel caster is investigated using large eddy simulations (LES) and particle image velocimetry (PIV). The computational domain includes the entire submerged entry nozzle (SEN) starting from the tundish exit and the complete mold region. The results show a large, elongated recirculation zone in the SEN below the slide gate. The simulation also shows that the flow exiting the nozzle ports has a complex time-evolving pattern with strong cross-stream velocities, which is also seen in the experiments. With a few exceptions, which are probably due to uncertainties in the measurements, the computed flow field agrees with the measurements. The instantaneous jet is seen to have two typical patterns: a wobbling “stair-step” downward jet and a jet that bends upward midway between the SEN and the narrow face. A 51-second time average suppressed the asymmetries between the two halves of the upper mold region. However, the instantaneous velocity fields can be very different in the two halves. Long-term flow asymmetry is observed in the lower region. Interactions between the two halves cause large velocity fluctuations near the top surface. The effects of simplifying the computational domain and approximating the inlet conditions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号