首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高聚丙烯(PP)的熔体强度,改善PP的发泡性能,用双螺杆挤出机对PP进行硅烷交联改性,制备出了高熔体强度聚丙烯(HMSPP)后,进行了模压法发泡的研究.结果表明:HMSPP随着引发剂含量的增加,改性PP的熔体强度提高;PP发泡材料的密度降低至0.118 g/cm3.发泡剂AC的用量及成核剂的含量对发泡材料的表观密度有很大影响,当发泡剂含量为2.5份、成核剂含量为1份时,得到的PP发泡板材密度降低,发泡倍率增大,泡孔均匀致密,力学性能较好.  相似文献   

2.
聚丙烯挤出增强结构发泡成型的研究   总被引:2,自引:0,他引:2  
通过加入高熔体强度聚丙烯(HMSPP)、低密度聚乙烯(LDPE)及(乙烯/丙烯/二烯)共聚物(EPDM)对聚丙烯(PP)进行共混改性,提高其熔体强度;并在此基础上,以玻璃纤维(GF)改性PP母粒对PP进行增强,使用单螺杆挤出机获得了PP挤出增强结构发泡制品.重点分析了PP挤出增强结构发泡中HMSPP、LDPE、EPDM、GF改性PP母粒含量及工艺参数对PP挤出增强结构发泡制品的影响.结果表明,当PP为100份、LDPE为15份、EPDM为5份、GF改性PP母粒为15份,机头温度160℃,螺杆转速20 r/min,机头压力12.5 MPa时,能获得较好的PP增强结构发泡制品.  相似文献   

3.
采用聚丙烯(PP)粉料,以过氧化苯甲酰(BPO)为引发剂,多官能团单体季戊四醇三丙烯酸酯(PETA)为接枝剂,通过固相接枝法制备了高熔体强度PP。研究表明,抗氧剂的加入能有效控制固相接枝反应中的降解,当BPO的用量为0.05份,PETA的用量为1.6份,抗氧剂用量为0.4份时,PP粉料的熔体流动速率从改性前的9.0 g/10 min下降到0.9 g/10 min;采用测重法测定的熔体强度为2.56 g,而改性前PP的熔体强度小于0.05 g。采用改性后的PP粉料进行模压发泡,发泡密度可达0.12 g/cm3。  相似文献   

4.
通过熔融共混法采用均聚聚丙烯(PP-H)和嵌段共聚聚丙烯(PP-B)制备了PP微发泡基础树脂,并研究了PPH用量对基体树脂发泡后力学性能的影响;同时采用发泡改性剂和成核剂(碳酸钙、滑石粉)对PP微发泡基础树脂进行改性,研究了发泡改性剂和成核剂用量对PP发泡性能的影响。结果表明,随PP-H用量的增加,发泡片材的拉伸强度下降,弯曲强度增加;发泡改性剂提高了PP的熔体强度,随成核剂碳酸钙、滑石粉用量的增加,发泡片材的密度下降,泡孔密度增大,其适宜用量为0.5份(质量份,下同);改性后PP的剪切黏度变小,挤出胀大比增大,相对分子质量分布变化不大;用改性PP制备的微发泡片材的泡孔直径小于50μm,泡孔密度可达10~6个/cm~3。  相似文献   

5.
采用广角X射线衍射仪、差示扫描量热仪等测定了β成核剂改性聚丙烯(PP)(β-PP)中β晶含量,研究了β晶含量与PP悬臂梁缺口冲击强度的关系、β成核剂的成核热稳定性及β成核剂对PP结晶速率的影响。结果表明:随着β成核剂用量的增加,PP的抗冲击性能提高,但其冲击强度与β晶含量不成正比;β晶含量与β-PP的结晶度达到平衡时,PP冲击强度最佳,当β成核剂质量分数为0.05%时,β-PP的冲击强度最高,达82.4 k J/m2,此时β晶含量为75.78%,β-PP结晶度为77.3%;加入β成核剂使PP的结晶速率降低,较快的降温速率会减少β晶的形成。  相似文献   

6.
为改善山梨醇类成核剂在使用过程中分散性差、增透效率有限等缺点,将六种硬脂酸盐(锂、钠、钾、钙、锌、铝)作为润滑剂与山梨醇类成核剂复配协同改性聚丙烯(PP)。通过万能试验机、冲击试验机、熔体流动速率仪和雾度仪等设备对试样的光学性能、力学性能和流动性能进行表征。通过扫描电子显微镜(SEM)、偏光显微镜(POM)对改性PP的球晶形态和结晶形貌进行表征。结果表明:与硬脂酸锂、硬脂酸钠和硬脂酸钾相比,硬脂酸钙、硬脂酸锌和硬脂酸铝对PP的增透效果更好。硬脂酸钙、硬脂酸锌和硬脂酸铝在低含量下(≤0.03%),PP的光学性能、力学性能和流动性得到明显改善。硬脂酸钙、硬脂酸锌和硬脂酸铝的加入可以提升山梨醇类成核剂在PP基体中的分散性,从而提高PP的综合性能。  相似文献   

7.
选用不同分子量的聚丙烯(PP)及低密度聚乙烯(LDPE)和聚异丁烯(PIB)。用双螺杆熔融共混的方式对PP进行改性研究。测试了改性剂加入量对PP的熔体强度及发泡性能的影响,分析了PP配方中各种成分对发泡材料密度、表观质量及性能的影响。结果表明。PP共混体系的熔体强度都有不同程度的提高,可以用于成型低发泡倍率的泡沫片材;PP/LDPE共混体系的发泡倍率较高,发泡片材表面光滑,气孔细密,具有较好的综合性能。  相似文献   

8.
采用自行研制的高熔体强度聚丙烯(PP),通过挤出片材发泡实验,研究了口模温度、挤出温度、螺杆转速等工艺条件以及PP熔体强度和发泡成核剂对片材发泡效果的影响。PP发泡片材最佳挤出工艺条件为:挤出温度210℃,口模温度160℃,螺杆转速40 r/min。PP熔体强度为13 cN,发泡成核剂用量为6 phr时,发泡片材密度最低(0.450g/cm~3),片材表面光滑平整,挤出发泡效果最好。  相似文献   

9.
在聚丙烯(PP)中加入β成核剂(TMB-5),以超临界二氧化碳(CO2)作为发泡剂,用高压发泡釜对其进行间歇发泡。研究β成核剂用量、饱和温度、饱和压力对β成核/PP发泡材料的结晶和发泡性能的影响。结果表明,β成核剂有效促进了β晶的形成,发泡材料中β晶相对含量最高可达到92.4%,但增大饱和压力却会抑制β晶产生。β成核剂同时起到异相成核作用,使泡孔成核更容易,制得的样品发泡性能较好。另外,饱和温度的升高会使PP熔体强度降低,导致泡孔的尺寸增大、密度减小;而随着饱和温度降低,饱和压力升高,气体在熔体中的溶解度增大,泡孔成核数量增多,使泡孔密度增大、泡孔尺寸减小。饱和压力为22 MPa时,泡孔密度可达2.72×108个/cm3。  相似文献   

10.
以过氧化苯甲酰(BPO)为引发剂,在同向双螺杆挤出机上对聚丙烯(PP)进行硅烷交联,制备了高熔体强度聚丙烯(HMSPP),然后制得高发泡倍率的PP制品.实验对改性PP的熔体强度、力学性能、热性能和发泡性能进行了表征.结果表明:自制HMSPP的熔体强度是纯PP的5.01倍,力学性能和耐热性与纯PP相比均有较大提高,可用于成型高发泡倍率制品.  相似文献   

11.
以偶氮二甲酰胺(AC发泡剂)、Zn O和Na HCO3复合体系作为发泡剂,采用模压发泡的方法制备高填充粉煤灰聚氯乙烯(PVC)复合发泡板材,确定复合发泡剂的最优配比及其在复合发泡板材中的最佳用量,并对其性能进行了研究。采用发气量测定、热重/差示扫描量热(TG/DSC)分析对AC发泡剂进行了改性研究,选出分解温度满足加工条件的复合发泡剂。添加不同份数的复合发泡剂制备PVC复合发泡板材,用扫描电子显微镜(SEM)分析其断面,测试板材的冲击强度及弯曲强度。实验结果表明,当AC发泡剂、Zn O和Na HCO3的配比为2∶1∶1.5时,最大发气量为213 m L/g,分解温度区间为165~177℃,满足PVC发泡板材加工。当复合发泡剂添加量为6份时,力学性能达到最佳,弯曲强度为17.63 MPa,冲击强度为21.88 k J/m2,达到国家硬质聚氯乙烯低发泡板材的标准;粉煤灰填充量高达61.16%。  相似文献   

12.
在均聚聚丙烯(PPH)、无规共聚聚丙烯(PPR)和嵌段共聚聚丙烯(PPB)中分别加入刚性成核剂,研究其对聚丙烯(PP)结构与性能的影响。利用电子万能试验机、差示扫描量热仪(DSC)、傅立叶红外光谱仪(FT-IR)和偏光显微镜(POM)等表征手段对改性PP的力学性能、微观结构和结晶性能进行了研究。结果表明,刚性成核剂有细化球晶和加快结晶速率的作用;同时能有效提高PP的弯曲模量、冲击强度、热变形温度;添加0.2份刚性成核剂的PPH和PPB以及添加0.3份刚性成核剂PPR的综合性能最佳。  相似文献   

13.
采用单螺杆挤出机制备了低密度聚乙烯(LDPE)共混改性聚丙烯(PP)可发性粒料,并通过模压发泡工艺得到改性PP发泡材料;考察了发泡剂的热分解特性以及LDPE的含量对共混体系的熔融/结晶行为、晶体结构和发泡性能的影响。结果表明:与纯偶氮二甲酰胺(AC)相比,复合发泡剂的分解温度下降了45℃;LDPE的引入没有改变PP的晶型结构,但降低了共混体系的结晶度;当LDPE的含量为15%~20%时,LDPE/PP共混体系的发泡效果最佳。  相似文献   

14.
成核剂对聚丙烯结晶形态和力学性能的影响   总被引:16,自引:0,他引:16  
研究了聚丙烯(PP)/成核剂共混物的结晶形态及力学性能。结果表明:加入成核剂后,提高PP的结晶温度,加快了结晶速度,使PP球晶细化;成核剂用量在0—0.2份之间时,PP的冲击强度、拉伸强度、硬度、热变形温度均随成核剂用量的增加而提高。  相似文献   

15.
采用过氧化苯甲酰(BPO)为引发剂,通过一步反应挤出法将接枝单体苯乙烯(St)和端乙烯基硅油(VS)接枝到等规聚丙烯(i PP)上制备高熔体强度聚丙烯(HMSPP),同时在制备过程中原位添加α晶成核剂S20或NA11,考察了两种不同的α晶成核剂对HMSPP的制备及其结晶性能、力学性能和发泡性能的影响。熔体流动速率和分子量分布的测试结果表明,S20或NA11的原位添加没有影响i PP接枝反应的进行;差示扫描量热研究表明,成核剂的加入可以有效促进HMSPP的成核结晶,消除了HMSPP结晶过程中的双结晶峰现象,但成核剂的加入对HMSPP的力学性能并无显著影响。S20或NA11的加入可以有效调控发泡样品的泡孔尺寸,使得泡孔直径从38μm增大到50μm以上,发泡倍率也分别从25倍增大到36倍和37倍。  相似文献   

16.
段为  彭万  胡天赐  汪克风 《塑料工业》2014,(3):78-80,106
研究了α晶型成核剂和β晶型成核剂对聚丙烯(PP)/乙烯-辛烯共聚物(POE)/CaCO3复合材料力学性能与热变形温度的影响,并考察了丙烯腈-苯乙烯(AS)树脂作为特殊的β成核剂改性复合材料的效果。结果表明,α成核剂提高PP/POE/CaCO3复合材料的刚性;β成核剂增加复合材料的韧性;α成核剂与β成核剂的加入,均提高复合材料的热变形温度;AS树脂做特殊β成核剂能同时提高复合材料的拉伸强度、弯曲强度、冲击强度和热变形温度。  相似文献   

17.
研究了β成核剂和活性硅微粉对聚丙烯(PP)熔体流动速率、热变形温度及力学性能的影响,结果表明,单独使用28%活性硅微粉改性PP,PP/硅微粉复合材料的熔体流动速率没有降低,热变形温度从92.3℃提高到104.9℃,室温缺口冲击强度和断裂伸长率分别为纯PP的1.48倍和2倍。此外,β成核剂和活性硅微粉协同在PP增韧方面效果显著,在活性硅微粉28%和β成核剂0.5%含量时,PP复合材料室温缺口冲击强度和断裂伸长率分别为纯PP的1.7倍和3.5倍,PP热变形温度提高了34.4℃,拉伸强度和维卡软化点有少许降低。  相似文献   

18.
采用低密度、大比表面积的纳米Si O2为成核剂,乙烯-醋酸乙烯共聚物/丁腈橡胶(EVA/NBR)为增韧体,通过模压交联发泡制备了高弹性的聚丙烯(PP)发泡材料。研究了EVA、NBR添加量对PP发泡工艺与性能的影响。通过力学性能测试及形貌分析,考察了制备高弹性发泡PP的最佳工艺条件。实验结果表明,当EVA、NBR含量均为12.5%时,发泡PP综合性能最佳,拉伸强度为25 MPa,断裂伸长率为6.8%,冲击强度达到10.9 k J/m2,维卡软化温度为146.8℃。  相似文献   

19.
通过融熔共混的方法制备了β成核剂——庚二酸钙(CaHA)改性的聚丙烯(PP),并测试了其改性效果和力学性能。结果表明,CaHA是一种高效的β成核剂,对促进PP的α晶型向β晶型转变具有显著效果;当加入的CaHA含量为1%时,PP的改性效果最好,其中冲击强度可达到32.8 kJ/m~2,拉伸强度达到38.8 MPa,弯曲强度达到31.6 MPa。  相似文献   

20.
云母与成核剂复配改性PP   总被引:2,自引:0,他引:2  
采用云母和成核剂填充改性聚丙烯(PP),研究了复合材料的力学性能、结晶性能及耐热性能。结果表明:云母可有效提高PP的弯曲强度及模量、悬臂梁缺口冲击强度和耐热性能;少量成核剂NA11和表面活性剂硬脂酸钙可使PP/云母复合材料的拉伸强度、弯曲强度、弯曲模量及悬臂梁缺口冲击强度较纯PP分别提高10.4%,32.9%,92.6%,9.2%,热变形温度由纯PP的105℃提高到135℃;云母及NA11对PP具有异相成核作用,复合材料的结晶温度明显提高,晶粒细化、致密。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号