首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了SO4 2 -/ZrO2 固体超强酸催化剂 ,用Hammett指示剂法和吡啶吸附的FT -IR光谱法测定了其酸强度和酸中心类型 ;以邻二甲苯和苯乙烯生成 1-苯基 - 1- (3,4-二甲基苯基 ) -乙烷 (PXE)的烷基化为探针反应 ,研究了焙烧温度对催化性能的影响以及反应温度和苯乙烯的加料方式对产物收率的影响。结果表明 ,当焙烧温度高于 5 0 0℃ ,SO4 2 -/ZrO2 可以形成超强酸 ,其表面上同时存在Lewis酸中心和Bronsted酸中心 ;SO4 2 -/ZrO2 固体超强酸催化剂在邻二甲苯和苯乙烯的烷基化反应中表现出高催化活性 ,并没有苯乙烯的副反应发生 ;苯乙烯的加料方式对产物收率有明显影响 ;反应温度高于 10 0℃ ,反应温度对产物收率影响较小  相似文献   

2.
邻二甲苯和苯乙烯在WO3/ZrO2固体超强酸的烷基化反应   总被引:5,自引:2,他引:5  
通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)6H2W12O40制备了WO3/ZrO2固体超强酸催化剂;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;研究了以邻二甲苯和苯乙烯制备1-苯基-1-(3,4-二甲基苯基)-乙烷(PXE)的烷基化反应,考察了催化剂的焙烧温度、WO3的负载量、反应温度、反应时间、催化剂用量对反应的影响以及催化剂稳定性.结果表明,在750~850 ℃,WO3的负载量为5%~15%的WO3/ZrO2体系可以形成超强酸,其表面上同时存在Lewis酸中心和Bronsted酸中心,并且可以相互转化;WO3/ZrO2固体超强酸催化剂在苯乙烯和邻二甲苯的烷基化反应中表现出良好的催化性能和稳定性;该反应的最佳实验条件为反应温度为100 ℃,n(邻二甲苯)/n(苯乙烯)=5.0,反应时间为5 h,催化剂用量为2.0 g.  相似文献   

3.
SO_4~(2-)/ZrO_2固体超强酸催化剂上的酯化反应机理   总被引:4,自引:0,他引:4  
与液体酸和酸性树脂催化剂相比,固体超强酸催化剂具有许多优点,如无腐蚀性、不污染环境、易与产物分离和重使用性等。通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)2SO4制备了SO42-/ZrO2固体超强酸催化剂;使用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以甲醇、乙酸和乙酸乙酯吸附在SO42-/ZrO2固体超强酸催化剂上的FT-IR光谱,推测酯化反应机理。结果表明,当焙烧温度高于500℃,SO42-/ZrO2可以形成超强酸,其表面上同时存在Lewis酸和Bronsted酸中心;在SO42-/ZrO2固体超强酸催化剂上,酯化反应既可以在Lewis酸中心进行,也可以在Bronsted酸中心上进行。  相似文献   

4.
SO42-/ZrO2-Al2O3固体超强酸催化合成苯甲酸乙酯   总被引:5,自引:0,他引:5  
采用沉淀-浸渍法制备了SO4^2-/ZrO2-Al2O3,固体超强酸,研究了SO4^2-/ZrO2-Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为:锆铝摩尔比为1:2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4 h,催化剂的用量为总量的6.64%。此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能。  相似文献   

5.
以醋酸和乙醇酯化为模型反应 ,考察了SO2 - 4/γ -Al2 O3,SO2 - 4/ZrO2 ,SO2 - 4/Fe2 O3等几种SO2 - 4/MxOy 型固体超强酸及其不同的制备方法对酯化反应催化活性的影响 ,得出以FeSO4 ·7H2 O在550℃下直接焙烧 ,所得SO2 - 4/Fe2 O3型固体超强酸催化活性最佳 ,且酯化反应主要为固体超强酸催化剂表面上的B酸中心所催化的结论。  相似文献   

6.
纳米固体超强酸SO4^2—/TiO2催化合成尿囊素的研究   总被引:1,自引:0,他引:1  
以纳米固体超强酸SO4/^2/TiO2为催化剂,以尿素和乙醛酸为原料合成了尿囊素,得到了最佳条件为:尿素,乙醛酸摩尔比3.5:1,催化剂用量6%,反应温度70-75℃,收率达58.0%。  相似文献   

7.
制备了ZrO2/SO42-型固体起强酸催化剂;以有机酸和醇的酯化为探针反应,研究了焙烧温度和反应物分子结构对催化活性的影响;用滴定法和FT-IR研究了其酸强度和表面酸中心类型。  相似文献   

8.
制备了超细固体超强酸SO42-/ZrO2,采用XRD、SEM、IR对该催化剂进行表征.以超细固体超强酸SO42-/ZrO2为催化剂,棕榈酸与乙醇为原料合成棕榈酸乙酯.探讨了不同催化剂类型、醇酸摩尔比、催化剂用量、反应时间等因素对转化率的影响.结果表明,与普通固体酸相比,超细固体超强酸SO42-/ZrO2对于棕榈酸乙酯的合成具有较好的催化性能.较适宜的反应条件为n(棕榈酸)∶n(乙醇)=4∶1,催化剂用量0.8 g,反应3 h.在此条件下,棕榈酸的收率可达70.3%.  相似文献   

9.
S04^2—/TiO2固体超强酸催化剂的表面化学研究   总被引:1,自引:0,他引:1  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制各备了S04^2-/TiO2固体超强酸。用XRD、LRS方法研究了S04^2-/TiO2和Ti02的本体和表面结构;用化学分析法、Hammett指示剂滴定法和吡啶吸附的FT—IR光谱法测定了S04^2-/TiO2的S含量、酸强度、酸中心类型和S04^2-/TiO2表面上S04^2-与TiO2表面的结合形式;用XRS测定了S04^2-/TiO2的能量。研究结果表明,当预处理温度在425—575℃内,S04^2-/TiO2催化剂体系可以形成固体超强酸,同时其表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;在本体中和表面上主要呈金红石结构,并没有Ti(SO4)2和TiOSO4的晶型存在;S04^2-/TiO2表面上的OH为Bronsted酸中心,Ti^4 上的空位为Lewis酸中心,SO4^2—以齿桥的形式与Ti^4 配位,由于S^ 6的强吸电于能力而产生强的电于诱导效应,从而产生超强酸中心。  相似文献   

10.
研究了ZrO2 /SO42 -型固体超强酸催化剂在缩羰化反应中的可行性 ,利用红外光谱仪和阿贝折光仪对产品进行了鉴定。当焙烧温度在 5 0 0~ 70 0℃和催化剂用量为 2g时 ,产品收率达 6 9 1% ;并与一些液体酸(草酸、磷酸和浓硫酸 )和固体酸 (USY、LD - 1)催化剂进行了对比。ZrO2 /SO42 -型固体超强酸催化剂在精细化学品合成中有待于进一步研究开发  相似文献   

11.
采用沉淀-浸渍法制备了SO42-/ZrO2-Al2O3,固体超强酸,研究了SO42-/ZrO2Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为锆铝摩尔比为l2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4 h,催化剂的用量为总量的6.64%.此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能.  相似文献   

12.
以硝酸锆为锆源,以阴离子表面活性剂十二烷基硫酸钠(SDS)为模板剂,S2O8^2-浸渍无定形Zr(OH)4,制得介孔S2O8^2-/ZrO2固体超强酸,通过N2吸附-脱附、XRD分析、Hammett非水滴定、TEM等方法,考察了不同焙烧温度对S2O8^2-/ZrO2介孔超强酸晶体结构、酸强度等性能的影响。结果表明,当焙烧温度600℃,S2O8^2-/ZrO2样品比表面积为140m2/g,平均孔径在3~4nm之间,酸强度H0≤-12.7,为介孔相固体超强酸。  相似文献   

13.
分别以氧氯化锆、硅溶胶和氨水为锆源、硅源和沉淀剂,采用共沉淀法制备Zr(OH)4-Si(OH)4,110℃干燥后经硫酸浸渍、干燥和焙烧制得SO42-/ZrO2-SiO2固体超强酸。XRD和比表面积测定结果表明,SiO2的引入对SO42-/ZrO2催化剂的结构产生了重要影响,从而使其比表面积明显增大。以所制备的SO42-/ZrO2-SiO2固体超强酸为催化剂,代替浓硫酸用于丁酸和丁醇的酯化反应,考察了硫酸浸渍液浓度、焙烧温度等制备条件对其催化性能的影响。结果表明,采用硫酸浸渍液浓度为1.0 mol/L,焙烧温度为550℃所制备的SO42-/ZrO2-SiO2催化剂,在丁醇和丁酸的物质的量比为1.2及不添加任何带水剂的条件下,丁酸丁酯的收率高达90%以上,优于SO42-/TiO2-WO3和TiSi W12O40/TiO2催化剂。  相似文献   

14.
采用沉淀-浸渍法制备了SO42-/ZrO2-Al2O3固体超强酸,研究了SO42-/ZrO2-Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为:锆铝摩尔比为1:2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4h,催化剂的用量为总量的6.64%。此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能。  相似文献   

15.
SO42-/Fe2O3型固体超强酸的制备及酯化催化活性的研究   总被引:6,自引:3,他引:6  
研究了由FeSO4·7H2 O直接焙烧制备SO2 -4/Fe2 O3 型固体超强酸时 ,焙烧温度、焙烧时间对催化剂性能的影响 ,并对制得的SO2 -4/Fe2 O3 型固体超强酸催化剂 ,测定了其SO2 -4与Fe2 O3 的摩尔比、表面酸度、酯化催化活性等数据 ,得到了SO2 -4/Fe2 O3 型固体超强酸的最佳制备条件 :焙烧温度 5 5 0℃ ,焙烧时间 5h。在此条件下 ,制得的SO2 -4/Fe2 O3 型固体超强酸催化剂中SO2 -4与Fe2 O3 的摩尔比为 1.71时 ,相应的表面酸度最大 (3.4 7mmol/g) ,对酯化反应的催化活性最好 ;SO2 -4与Fe2 O3 的摩尔比低于或高于这一数值 ,对应的表面酸度值都降低 ,对酯化反应的催化活性也降低。适量吸水会使SO2 -4/Fe2 O3 固体超强酸催化剂的表面酸度增加 ,从而使其对酯化反应的催化活性提高 ,但吸水过多 ,反而会导致其对酯化反应的催化活性丧失  相似文献   

16.
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO2-4/TiO2固体超强酸;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以邻苯二酚和异丁醛为原料,经过缩合、重排合成了呋喃酚;考察了催化剂的焙烧温度、用量和原料配比对反应的影响。结果表明,当焙烧温度在425~575℃,SO2-4/TiO2样品可以形成固体超强酸体系,同时表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;SO2-4/TiO2固体超强酸在呋喃酚的合成中具有较高的催化活性、催化速率快、化学稳定性好、无环境污染。在该实验条件下,邻苯二酚的转化率达到51.8%,呋喃酚的收率可达30%,其纯度为99.2%。  相似文献   

17.
SO2-4/TiO2固体超强酸催化合成呋喃酚   总被引:2,自引:0,他引:2  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H25O4制备了SO2-4/TiO2固体超强酸;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以邻苯二酚和异丁醛为原料,经过缩合、重排合成了呋喃酚;考察了催化剂的焙烧温度、用量和原料配比对反应的影响.结果表明,当焙烧温度在425~575℃,SO2-4/TiO2样品可以形成固体超强酸体系,同时表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;SO2-4/TiO2固体超强酸在呋喃酚的合成中具有较高的催化活性、催化速率快、化学稳定性好、无环境污染.在该实验条件下,邻苯二酚的转化率达到51.8%,呋喃酚的收率可达30%,其纯度为99.2%.  相似文献   

18.
利用硫酸钡重量法对SO24-/ZrO2固体超强酸中的硫含量进行了分析.结果表明随焙烧温度的升高SO24-/ZrO2存在两个的快速流失温度区,并与晶相转变温度相对应.此外,ZrOCl2,H2SO4,NH3@H2O的浓度及焙烧时间等制备条件对SO24-/ZrO2中的硫含量都存在较大影响.  相似文献   

19.
制备了稀土La^3+掺杂的固体超强酸催化剂SO4^2-/ZrO2-TiO2/La^3+,考察了催化剂种类、用量、反应时间、物料摩尔比等对酯化反应结果的影响。选用SO4^2-/ZrO2-TiO2/La^3+作催化剂,并采用正交试验技术,优化出最佳的合成工艺条件:催化剂用量为0.75g/0.1mol乳酸,反应时间2h,酸醇比为1:3,此条件下酯收率可达99.26%,且催化剂可以重复使用。  相似文献   

20.
固体超强酸SO4^2-/ZrO2-SiO2的制备及其催化性能的研究   总被引:1,自引:1,他引:1  
分别以氧氯化锆、硅溶胶和氨水为锆源、硅源和沉淀剂,采用共沉淀法制备Zr(OH)4-Si(OH)4,110 ℃干燥后经硫酸浸渍、干燥和焙烧制得SO2-4/ZrO2-SiO2固体超强酸.XRD和比表面积测定结果表明,SiO2的引入对SO2-4/ZrO2催化剂的结构产生了重要影响,从而使其比表面积明显增大.以所制备的SO2-4/ZrO2-SiO2固体超强酸为催化剂,代替浓硫酸用于丁酸和丁醇的酯化反应,考察了硫酸浸渍液浓度、焙烧温度等制备条件对其催化性能的影响.结果表明,采用硫酸浸渍液浓度为1.0 mol/L,焙烧温度为550 ℃所制备的SO2-4/ZrO2-SiO2催化剂,在丁醇和丁酸的物质的量比为1.2及不添加任何带水剂的条件下,丁酸丁酯的收率高达90%以上,优于SO2-4/TiO2-WO3和TiSiW12O40/TiO2催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号