首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于K-means聚类的欠采样存在仅适用于超球形状数据、未考虑重叠区对分类的影响及簇中样本的稠密程度等问题.因此,文中提出基于密度峰值聚类的自适应欠采样方法.首先利用近邻搜索算法识别重叠区的多数类样本并将其删除.然后应用改进的密度峰值聚类自动获得多个不同形状、大小和密度的子簇.再根据子簇中样本的稠密程度计算采样权重并进行欠采样,在获得的平衡数据集上进行bagging集成分类.实验表明,文中方法在大多数数据集上性能表现较优.  相似文献   

2.
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。  相似文献   

3.
不平衡数据分类是机器学习研究领域中的一个热点问题。针对传统分类算法处理不平衡数据的少数类识别率过低问题,文章提出了一种基于聚类的改进AdaBoost分类算法。算法首先进行基于聚类的欠采样,在多数类样本上进行K均值聚类,之后提取聚类质心,与少数类样本数目一致的聚类质心和所有少数类样本组成新的平衡训练集。为了避免少数类样本数量过少而使训练集过小导致分类精度下降,采用少数过采样技术过采样结合聚类欠采样。然后,借鉴代价敏感学习思想,对AdaBoost算法的基分类器分类误差函数进行改进,赋予不同类别样本非对称错分损失。实验结果表明,算法使模型训练样本具有较高的代表性,在保证总体分类性能的同时提高了少数类的分类精度。  相似文献   

4.
针对SMOTE(Synthetic Minority Over-sampling Technique)等传统过采样算法存在的忽略类内不平衡、扩展少数类的分类区域以及合成的新样本高度相似等问题,基于综合考虑类内不平衡和合成样本多样性的思想,提出了一种整合DBSCAN和改进SMOTE的过采样算法DB-MCSMOTE(DBSCAN and Midpoint Centroid Synthetic Minority Over-sampling Technique)。该算法对少数类样本进行DBSCAN聚类,根据提出的簇密度分布函数,计算各个簇的簇密度和采样权重,在各个簇中利用改进的SMOTE算法(MCSMOTE)在相距较远的少数类样本点之间的连线上进行过采样,提高合成样本的多样性,得到新的类间和类内综合平衡数据集。通过对一个二维合成数据集和九个UCI数据集的实验表明,DB-MCSMOTE可以有效提高分类器对少数类样本和整体数据集的分类性能。  相似文献   

5.
王圆方 《软件》2020,(2):201-204
针对SMOTE算法在合成少数类新样本时存在的不足,提出了一种基于层次聚类算法改进的SMOTE过采样法H-SMOTE。该算法首先对少数类样本进行层次聚类,其次根据提出的簇密度分布函数,计算各个簇的簇密度,最后在各个簇中利用改进的SMOTE算法进行过采样,提高合成样本的多样性,得到新的平衡数据集。通过对UCI数据集的实验表明,H-SMOTE算法的分类效果得到明显的提升。  相似文献   

6.
传统的分类算法在对不平衡数据进行分类时,容易导致少数类被错分。为了提高少数类样本的分类准确度,提出了一种基于改进密度峰值聚类的采样算法IDP-SMOTE。首先,采用Box-Cox变换和σ准则对密度峰值聚类算法进行改进,实现了聚类中心和离群点的自动判别;然后,将改进的密度峰值聚类算法与SMOTE升采样算法相结合,去除噪声数据,并基于少数类样本的局部密度和邻近距离,在子类的范围内合成采样数据。该算法有效避免了升采样导致的边界模糊,改善了类内不平衡及边界样本难以学习的问题,同时实现了自动聚类和重采样,防止了人为因素干扰。通过实验对比,验证了提出算法的有效性和自适应性。  相似文献   

7.
《信息与电脑》2021,(1):45-49
采用传统过采样算法会导致忽略边界样本重要信息、新样本高相似度等问题,本文针对这一问题提出了一种新型的DB-BMCSMOTE方法。首先,该算法用DBSCAN聚类法对少数类聚类,识别并去除噪音后对标签中存在的边界少数样本依概率进行标记。其次,对聚类生成的每一样本簇生成密度函数,计算其密度及采样权重,将各簇中依概率标记的少数样本与较远样本间的中点进行过采样,以提升模型的准确率。实验结果表明,该算法相比其他算法平均提升3.8%,最大为5.92%,并有效应用于信用评价。  相似文献   

8.
Bagging组合的不平衡数据分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
秦姣龙  王蔚 《计算机工程》2011,37(14):178-179
提出一种基于Bagging组合的不平衡数据分类方法CombineBagging,采用少数类过抽样算法SMOTE进行数据预处理,在此基础上利用C-SVM、径向基函数神经网络、Random Forests 3种不同的基分类器学习算法,分别对采样后的数据样本进行Bagging集成学习,通过投票规则集成学习结果。实验结果表明,该方法能够提高少数类的分类准确率,有效处理不平衡数据分类问题。  相似文献   

9.
在集成算法中嵌入代价敏感和重采样方法是一种有效的不平衡数据分类混合策略。针对现有混合方法中误分代价计算和欠采样过程较少考虑样本的类内与类间分布的问题,提出了一种密度峰值优化的球簇划分欠采样不平衡数据分类算法DPBCPUSBoost。首先,利用密度峰值信息定义多数类样本的抽样权重,将存在“近邻簇”的多数类球簇划分为“易误分区域”和“难误分区域”,并提高“易误分区域”内样本的抽样权重;其次,在初次迭代过程中按照抽样权重对多数类样本进行欠采样,之后每轮迭代中按样本分布权重对多数类样本进行欠采样,并把欠采样后的多数类样本与少数类样本组成临时训练集并训练弱分类器;最后,结合样本的密度峰值信息与类别分布为所有样本定义不同的误分代价,并通过代价调整函数增加高误分代价样本的权重。在10个KEEL数据集上的实验结果表明,与现有自适应增强(AdaBoost)、代价敏感自适应增强(AdaCost)、随机欠采样增强(RUSBoost)和代价敏感欠采样自适应增强(USCBoost)等不平衡数据分类算法相比,DPBCPUSBoost在准确率(Accuracy)、F1分数(F1-Score)、几何均值(G-mean)和受试者工作特征(ROC)曲线下的面积(AUC)指标上获得最高性能的数据集数量均多于对比算法。实验结果验证了DPBCPUSBoost中样本误分代价和抽样权重定义的有效性。  相似文献   

10.
为解决软件缺陷预测中的不平衡问题,提出一种基于聚类少数类的改进SMOTE算法。对训练集中的少数类样本进行K-means聚类后,通过关键特征权重及与簇心距离权重,计算每个样本的合成样本数量,采用改进的SMOTE算法实现过抽样。采用CART决策树作为基分类器,使用AdaBoost算法对平衡数据集训练,得到分类模型CSMOTE-AdaBoost。在7组NASA数据集上进行实验,验证分类模型中关键特征权重及与簇心距离权重的有效性,其结果优于传统分类算法,具有更好的分类效果。  相似文献   

11.
为了缓解软件缺陷预测的类不平衡问题,避免过拟合影响缺陷预测模型的准确率,本文提出一种面向软件缺陷预测的基于异类距离排名的过采样方法(HDR).首先,对少数类实例进行3类实例区分,去除噪声实例,减少噪声数据导致的过拟合的情况,然后基于异类距离将实例进行排名,选取相似度高的实例两两组合产生新实例,以此来提升新实例的多样性,...  相似文献   

12.
针对合成少数类过采样技术等基于近邻值的过采样算法在处理数据类不平衡时,不能根据少数类样本分布情况及时调整模型参数,导致过采样后的数据集引入噪声,并且在原始分布区域上无差别地合成少数类实例造成过拟合等问题,提出了一种特征边界和密度适应的SMOTE算法(SMOTE algorithm for feature boundary and density adaptation)BDA-SMOTE。该算法为每一个少数类样本规划安全区域,增加少数类的分布,同时基于数据的分布密度动态地调整模型参数,确保生成的数据具有明显的特征边界,防止过拟合。在公开数据集KEEL上与常用的SMOTE算法进行实验对比,结果BDA-SMOTE的性能优于其他基于近邻SMOTE算法。表明该算法较好地扩展了原数据集的分布,同时合成的噪声样本更少。  相似文献   

13.
一种基于混合重取样策略的非均衡数据集分类算法   总被引:1,自引:0,他引:1  
非均衡数据是分类中的常见问题,当一类实例远远多于另一类实例,则代表类非均衡,真实世界的分类问题存在很多类别非均衡的情况并得到众多专家学者的重视,非均衡数据的分类问题已成为数据挖掘和模式识别领域中新的研究热点,是对传统分类算法的重大挑战。本文提出了一种新型重取样算法,采用改进的SMOTE算法对少数类数据进行过取样,产生新的少数类样本,使类之间数据量基本均衡,然后再根据SMO算法的特点,提出使用聚类的数据欠取样方法,删除冗余或噪音数据。通过对数据集的过取样和清理之后,一些有用的样本被保留下来,减少了数据集规模,增强支持向量机训练执行的效率。实验结果表明,该方法在保持整体分类性能的情况下可以有效地提高少数类的分类精度。  相似文献   

14.
基于一趟聚类的不平衡数据下抽样算法   总被引:1,自引:0,他引:1  
抽样是处理不平衡数据集的一种常用方法,其主要思想是改变类别的分布,缩小稀有类与多数类的分布比例差距.提出一种基于一趟聚类的下抽样方法,根据聚类后簇的特征与数据倾斜程度确定抽样比例,按照每个簇的抽样比例对该簇进行抽样,密度大的簇少抽,密度小的簇多抽或全抽.在压缩数据集的同时,保证了少数类的数量.实验结果表明,本文提出的抽样方法使不平衡数据样本具有较高的代表性,聚类与分类性能得到了提高.  相似文献   

15.
针对SMOTE(synthetic minority over-sampling technique)等基于近邻值的传统过采样算法在处理类不平衡数据时近邻参数不能根据少数类样本的分布及时调整的问题,提出邻域自适应SMOTE算法AdaN_SMOTE.为使合成数据保留少数类的原始分布,跟踪精度下降点确定每个少数类数据的近邻值,并根据噪声、小析取项或复杂的形状及时调整近邻值的大小;合成数据保留了少数类的原始分布,算法分类性能更佳.在KE E L数据集上进行实验对比验证,结果表明AdaN_SMOTE分类性能优于其他基于近邻值的过采样方法,且在有噪声的数据集中更有效.  相似文献   

16.
针对传统采样方式准确率与鲁棒性不够明显,欠采样容易丢失重要的样本信息,而过采样容易引入冗杂信息等问题,以UCI公共数据集中的不平衡数据集Pima-Indians为例,综合考虑数据集正负类样本的类间距离、类内距离与不平衡度之间的关系,提出一种基于样本特性的新型过采样方式.首先对原始数据集进行距离带的划分,然后提出一种改进的基于样本特性的自适应变邻域Smote算法,在每个距离带的少数类样本中进行新样本的合成,并将此方式推广到UCI数据集中其他5种不平衡数据集.最后利用SVM分类器进行实验验证的结果表明:在6类不平衡数据集中,应用新型过采样SVM算法,相比已有的采样方式,少(多)数类样本的分类准确率均有明显提高,且算法具有更强的鲁棒性.  相似文献   

17.
王莉  陈红梅 《计算机科学》2018,45(9):260-265
SMOTE(Synthetic Minority Over-sampling TEchnique)在进行样本合成时只在少数类中求其K近邻,这会导致过采样之后少数类样本的密集程度不变的问题。鉴于此,提出一种新的过采样算法NKSMOTE(New Kernel Synthetic Minority Over-Sampling Technique)。该算法首先利用一个非线性映射函数将样本映射到一个高维的核空间,然后在核空间上计算少数类样本在所有样本中的K个近邻,最后根据少数类样本的分布对算法分类性能的影响程度赋予少数类样本不同的向上采样倍率,从而改变数据集的非平衡度。实验采用决策树(Decision Tree,DT)、误差逆传播算法(error BackPropagation,BP)、随机森林(Random Forest,RF)作为分类算法,并将几类经典的过采样方法和文中提出的过采样方法进行多组对比实验。在UCI数据集上的实验结果表明,NKSMOTE算法具有更好的分类性能。  相似文献   

18.
Class imbalance is a challenging problem that demonstrates the unsatisfactory classification performance of a minority class. A trivial classifier is biased toward minority instances because of their tiny fraction. In this paper, our density function is defined as the distance along the shortest path between each majority instance and a minority-cluster pseudo-centroid in an underlying cluster graph. A short path implies highly overlapping dense minority instances. In contrast, a long path indicates a sparsity of instances. A new under-sampling algorithm is proposed to eliminate majority instances with low distances because these instances are insignificant and obscure the classification boundary in the overlapping region. The results show predictive improvements on a minority class from various classifiers on different UCI datasets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号