首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
以铸造Al-Si过共晶合金为研究对象,采用现场金相显微镜对Al-Si过共晶合金的断裂过程进行观察,探讨了两相合金的断裂机理。试验发现:Al-Si过共晶合金的断裂首先发生在先析Si相的凹角处,随着外力的增加,裂纹向先析Si相内部进行扩展,达到相界处时改变方向,沿着Al-Si两相的相界进行扩展。分析认为:Al-Si两相合金中,相界的结合强度最弱,裂纹的扩展是择弱进行的。  相似文献   

2.
本文对 Al—13Si 共晶合金在超塑性变形时产生早期断裂的原因进行了研究。对影响Al—Si 共晶合金断裂的因素——第二相 Si 粒子形状、Si 粒子长大以及 Si 相与α相高温硬度差进行了详细分析。文章揭示出 Al—13Si 共晶合金的超塑性拉伸断裂是外部无颈缩的空洞型断裂。Si 粒子周围产生空洞是由于晶内位错堆积在 Si 粒子周围,造成应力集中,以及 Si 相与α相高温硬度相差悬殊,不能协调变形引起的。第二相 Si 粒子为带有尖角的短棒状,使得空洞沿尖角指向不均匀扩展,导致该合金发生早期断裂。  相似文献   

3.
很多实验表明,Si含量不同导致离心法制备过共晶Al-Si合金梯度功能材料(FGM)中初晶硅分布内外侧不同。为了解释这一实验现象,通过理论分析,提出存在一临界初始含量和临界析出温度的观点。分析表明:当Si含量低于临界含量和析出温度低于临界析出温度时,过共晶Al-Si合金析出的初晶硅密度小于残余合金熔液密度;当Si含量高于临界含量时,在临界温度以上合金析出的初晶硅密度大于合金熔液密度,临界温度以下合金析出的初晶硅密度小于合金熔液密度。这导致了离心法制备不同初始Si含量的过共晶Al-Si合金FGM中初晶硅分布于内外侧不同。最后采用实验进行了验证。  相似文献   

4.
喷射成形过共晶Al-Si合金材料的研究现状   总被引:1,自引:0,他引:1  
过共晶Al-Si合金具有较高的强度、较低的密度和热膨胀系数、良好的耐磨性和耐蚀性,在汽车、造船、航空航天及其他制造行业广泛应用.但当合金中Si含量太高时,合金组织粗大、偏析严重,同时材料的强度、塑性急剧降低而失去使用价值.喷射成形技术是一种全新的材料制备技术,具有快速凝固技术的基本特征,同时还具有生产工序简单、氧化和污染小等优点,在国外已经在特殊钢、高温合金、铝合金和铜合金等方面进行了产业化应用.但利用喷射成形技术来制备和生产过共晶Al-Si合金材料还很不成熟,有许多问题还没有得到妥善的解决,作者提出两点建议来进一步改善过共晶Al-Si合金材料的性能(1)在喷射成形过共晶Al-Si合金中添加微量稀土元素;(2)利用喷射共沉积技术制备过共晶Al-Si合金为基体的纤维增强复合材料.  相似文献   

5.
电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响   总被引:38,自引:2,他引:36  
研究了电磁搅拌对过共晶Al-Si合金中初生Si长大和形貌的影响。结果表明,当合金含Si量低于30%时,电磁搅拌引起过共晶Al-Si合金中初生Si显著细化和球团化,但当合金含Si量超过30%时,电磁搅拌对初生Si细化的作用有限,组织中仍然存在较粗大的板片状初生Si;提高电磁搅拌时合金熔体冷却速度可减小初生Si的尺寸;进行正、反转电磁搅拌,初生Si的尺寸将进一步减小,在电磁搅拌条件下,初生Si发生细化和球团化的主要原因是:搅拌引起合金熔体温度场、溶质场的均匀化,引起初生Si的机械破碎,相互摩擦和抑制初生Si各向异性生长。  相似文献   

6.
过共晶Al-Si合金作为最具代表性的喷射成形材料在轻质、耐热、耐磨结构件,尤其是发动机缸套的工业化生产方面,已获得大量的应用。目前商用化的过共晶Al-Si合金在热稳定性和高温性能方面的不足已成为开发高性能发动机的限制因素,因而也成为近年来各研究机构的主要研究方向。用Fe,Mn,Cr为主的合金化代替传统的以Cu,Mg为主的合金化,使Al2Cu,Al2CuMg等强化相被稳定性更高的α-Al(Fe,TM)Si相所代替,达到了组织和室温、高温性能的双重优化,制备出继PEAK和OSPREY公司之后开发的可应用于更高性能发动机缸套部件的新型过共晶Al-Si合金。  相似文献   

7.
采用无压熔渗法制备Si/Al复合材料,研究了熔渗温度对所制备Si/Al复合材料Si相形貌的影响,对Si相间基体合金的凝固组织进行了分析,测试了Si/Al复合材料热膨胀系数、热导率及抗弯强度。结果表明,在相同熔渗时间下,随着熔渗温度升高,所制备Si/Al复合材料中Si相从颗粒状到形成网络状。Si相间的Al-Si基体合金中不再是典型的初生相和共晶组织,而是出现了类似离异共晶的结晶现象,即初晶Si和共晶Si是在原存的Si相上结晶长大。XRD分析显示在所制备复合材料中只有Si相和Al相。随着熔渗温度升高复合材料热膨胀系数、热导率以及抗弯强度均出现下降。  相似文献   

8.
二元Al-Si合金的力学性能与微结构的关系   总被引:1,自引:0,他引:1  
研究了二元Al-Si合金的力学性能、氢含量和原子密度并分析了它们这间的关系,结果表明,Al-Si合金的力学性能在共晶点附近达到最佳值,其溶氢能力随Si含量的增加呈V形变化在共晶点附近达到最小值,而原子密度则呈倒V形变化。Al-Si合金力学性能的变化是其液、固态微观结构演化综合作用的结果。近共晶成分的Al-Si合金有良好的综合性能。  相似文献   

9.
离心铸造过共晶Al-Si 合金自生表面复合材料   总被引:17,自引:3,他引:14  
采用热模金属型工艺, 离心铸造过共晶Al-Si 合金, 获得了外层或外层和内层富集初晶Si, 其余部分为共晶组织构成的自生表面复合材料。分析了复合材料的形成过程, 考察了复合材料的组织、硬度和耐磨性。  相似文献   

10.
共晶Si形貌与A356铝合金的动态、准静态压缩变形下的力学性能及抗氢脆性能的影响密切相关。因此文章通过Material Test System (MTS)及霍普金森压杆(SHPB)测试变质前后A356铝合金的动态/准静态压缩力学行为,并采用电化学充氢方法研究合金的抗氢脆性能。结果表明,准静态压缩变形后,合金中板状共晶Si垂直于压缩方向破裂成颗粒状。细化后的共晶Si提高了合金的塑性,延缓了合金的失效。而动态压缩变形后,板状共晶Si变形不均匀,并且碎成块状的共晶Si的尖端在压缩过程中会切割基体,导致其附近出现裂纹等缺陷。随着应变速率增大,铸态A356合金的屈服强度及抗压强度逐渐增大,合金具有一定的应变速率敏感性。变质后,共晶Si得到细化,增大了Al/Si接触面积,共晶Si捕获原子氢后降低了其与基体的连结,导致合金在拉伸变形过程中裂纹更易沿其扩展,并且细化后的共晶Si会进一步降低合金的抗氢脆性能力。其中细化后残存的块状共晶Si在捕获原子氢后会出现脱粘现象,易成为裂纹萌发点。  相似文献   

11.
为了改善Al-Si合金性能,研究了强磁场对Al-Si过共晶合金组织的影响.依据热力学和晶粒形核理论,阐述了组织变化的原因.研究表明:当Al-Si过共晶合金在600℃施加强磁场并平行于磁场方向下凝固时,共晶组织被细化,但对初生硅相影响不大;磁场强度越大,细化效果越明显;强磁场降低了固态熵和磁自由能的影响,使共晶组织临界形核半径减小,而硅由于是逆磁质对其影响不大;强磁场使液态金属平行于磁场方向流动,进一步细化了组织.  相似文献   

12.
"绿色”高效Al -Si合金变质剂--Al-P中间合金   总被引:27,自引:0,他引:27  
为了解决Al-Si变质过程中的环境污染问题,用熔铸法制备了一种高效,低价格且适于产业化生产的Al-Si合金变质剂-Al-P中间合金,该中间合金w(P)可达到2.0%-5.5%,对共晶和过共晶(含Si量12%-24%)成分的Al-Si合金进行变质,加入0.3%-0.8%的Al-3P中间合金即得良好的变质效果,使其初晶Si数量明显增多,平均晶粒尺寸分别下降到30μm和50μm以下,该中间合金使用工艺简便,可在低温下加,而且无污染,无反应渣,变质效果长效稳定,易储存、使用综合成低,克服了当前变质的缺点,可以实现Al-Si合金的“绿色”变质,有着广阔的应用前景。  相似文献   

13.
对铸造Al-Si系合金中杂质元素Fe,合金元素Mg、Cu、Sn、Mn、Be、Pb和变质元素稀土、Sr、P、B、Na等的作用进行了分析和概述。Fe能提高合金硬度和耐磨性,但会降低合金的力学性能。Mg能提高合金强度,但Fe、Mg共同作用会降低合金的力学性能。Cu和Mn对脆性Al-Fe-Si相有变质作用,并能提高合金力学性能,Cu与Ni复合作用,可提高Al-Si合金的高温强度和硬度。Sn能提高合金的力学性能。Be降低富铁相有害作业,提高合金力学性能。Pb能提高合金的机加工性能和耐磨性能。Na、Ca都对共晶硅有变质作用,P、B可细化初晶Si,稀土元素和Sr对共晶Si和初晶Si都有变质作用。  相似文献   

14.
高压凝固亚共晶Al-Si合金的组织变异及生长机制   总被引:6,自引:0,他引:6  
研究了高压下凝固的亚共晶Al-Si合金的组织结构.结果表明,亚共晶Al-Si合金的凝固组织得到细化,初生α相为过饱和固溶体,其晶体生长方式为胞状生长.分析了高压凝固条件下胞状生长的机理.  相似文献   

15.
易宏坤  刘兆婷  李飞虎  张荻 《功能材料》2003,34(5):525-527,529
研究了过共晶Al-17Si-xLa合金在室温下不同频率的阻尼一应变振幅行为。Al-17Si-xLa合金通过常规的铸造和喷射成形工艺制备,并采用动态热机械分析仪(DMTA)对其阻尼行为进行研究。结果表明大多数铸态以及喷射成形态Al-17Si-xLa合金显示了类似的室温应变振幅-阻尼行为:即随振幅的增加,阻尼先不增大,然后明显升高出现阻尼峰,最后回落,可以用G-L位错阻尼理论加以解释;铸态下添加La对Al-17Si合金的阻尼行为影响不大,过量La(6%(质量分数))添加明显降低阻尼性能。La的添加明显提高喷射成形态Al-Si合金阻尼性能。喷射成形态Al-Si合金的阻尼明显比相应铸态Al-Si合金的阻尼高。  相似文献   

16.
研究了高压下凝固的亚共晶Al-Si合金的组织结构,结果表明,亚共晶Al-Si合金的凝固组织得到细化,初生α相为过饱和固溶体,其晶体生长方式为胞状生长,分析了高压凝固条件下胞状生长的机理。  相似文献   

17.
Si相的尺寸和形貌对Al-Si合金的性能具有重要的影响。如何在增加Si相的有效形核基底数量以显著提高Si相形核率、细化初晶Si的同时,不削弱共晶Si的细化和变质效果,是提高铝硅合金性能的关键。添加适量的合金元素和微量元素是调节Si相形核率的重要手段之一,特别是在不影响主合金元素成分要求的前提下,通过添加变质剂或细化剂,结合除杂技术和浇铸工艺可以明显细化共晶Si尺寸。但是,废杂铝中的杂质元素对Si相形核率的影响规律及其作用机理尚未达成共识,这是废杂铝再生铸造铝硅合金研究中的热点和难点。废杂铝再生因其具有原料来源广、可再生利用、节能减排效果显著等优点成为生产铸造铝合金的重要工艺。然而,由于废杂原料含有多种杂质元素,并且它们对铝硅合金中Si相的交互作用关系不确定,所以很难制定相应的技术措施以同时细化共晶Si和初生Si相。目前已经确证AlP为Si相形核的主要基底,β-Fe相为次要基底,氧化膜对二者的形成具有促进作用。近年来,除深入研究常见元素对Si相形核的作用机理外,两种及两种以上元素之间的相互作用对Si相形核的作用机理也开始受到广泛关注。在充分研究AlP、β-Fe相、氧化膜等可作为Si相形核基底物质的结构特性基础上,针对P-X、Fe-X、Ca-X等二元交互作用对Si相形核的影响研究也取得了显著成果。Sr、Ca、B、Mg等元素一般通过钝化AlP、β-Fe相等Si相形核基底的活性或与AlP反应生成更稳定的化合物这两种机制降低Si相的形核率。当三种或三种以上杂质元素通过直接或间接的交互作用对共晶硅形核率产生影响时,作用机理和作用效果将更为复杂。其主要表现为两种杂质元素单独存在时均有助于发挥第三元素的作用,但同时存在时会反应生成化合物,反而弱化第三元素促进Si相形核的作用。本文描述了Al-Si合金凝固过程中Si相形核基底的作用,重点讨论了常见杂质元素对Si相形核基底的影响。文末就如何进一步掌握杂质元素对Si相形核的交互作用规律以避免杂质元素的有害影响和充分发挥有益微量元素的积极作用提出了新的建议。  相似文献   

18.
本文采用新型连续定向凝固(CDS)装置研究了Al-Si合金(成分为12.7%~16.6%Si)的可采用工艺范围、共生区及其连续定向凝固材料的组织与性能。实验结果表明,Al-Si共晶系合金通过连续定向凝固可以获得短纤维的自生复合材料.在凝固速度为0.02~2.0mm/s的范围内,随着凝固速度的增加,Al-Si共晶系合金的共晶硅形态经历了片/纤维转变,抗拉强度及延伸率随凝固速度的增加而增大。本文还分析了Si纤维的形成机制。   相似文献   

19.
返回料添加比例对K44合金热疲劳性能的影响   总被引:1,自引:0,他引:1  
研究了返回料添加比例对新型抗热腐蚀高温合金K44热疲劳性能的影响.结果表明:新料和返回料合金试样V型缺口尖端主裂纹扩展长度与热循环次数之间遵循L=bNa规律.新料合金热疲劳裂纹萌生和扩展速率最低,随着合金中返回料比例的增大,热疲劳裂纹萌生速率和扩展速率也增大.热疲劳裂纹萌生于V型缺口尖端附近区域,沿枝晶间、晶界和开裂的碳化物扩展,主裂纹扩展以裂纹尖端连续开裂的形式进行.返回料合金由于氮含量增加导致共晶和夹杂物增多,碳化物聚集块化,加速了热疲劳裂纹的萌生与扩展.合金经热疲劳实验后,裂纹两侧产生氧化带和γ'相贫化带.  相似文献   

20.
为研究国产核级主管道不锈钢Z3CN20-09M中奥氏体/铁素体相界面在裂纹萌生与扩展过程中的作用,通过扫描电镜原位拉伸技术对核级主管道不锈钢在拉伸过程中的组织形变、微裂纹的萌生与扩展进行原位观察,对断口进行了分析.研究表明,在拉伸过程中,微裂纹优先在杂质颗粒和相界位置萌生.当铁素体/奥氏体界面垂直于拉伸方向时,裂纹倾向于沿相界萌生,并沿相界扩展;当铁素体/奥氏体界面平行于拉伸方向时,微裂纹在相界开裂,并垂直于界面扩展,主裂纹发生偏折,界面在裂纹扩展过程中起阻碍作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号