首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了钛白水解废酸中钪的回收及钪与钛的分离。在P204-TBP萃取体系中进行了钛白水解废酸提钪实验研究,在此基础上绘制了钪的萃取等温线,并进行了串级逆流萃取实验。针对萃取后含钪钛的有机相,提出了用洗脱剂EL洗脱负载有机相中的钛,并进行了相应的实验研究。对除钛后的有机相,考察了钪反萃的影响因素。实验结果表明:P204-TBP萃取体系基本可以实现钪的回收富集,经洗脱剂EL三级逆流洗脱,钛的洗脱率可达到98%,而钪的损失率仅为4%,钪钛的分离效果明显。洗脱钛后的有机相用氢氧化钠反萃,钪的单级反萃率能达到97%以上。钛白水解废酸经一次萃取、洗脱、反萃后得到的粗钪产品纯度可达到85%。  相似文献   

2.
通过对比试验,探讨了钠元素对氧化钪质量的影响。将钛白废酸采用P2O4、TBP、磺化煤油的混合萃取剂萃取,有机相用氢氧化钠反萃,将反萃的氢氧化钪用硫酸溶解,然后调pH值、加热、水解、过滤,滤液采用萃取剂再次萃取,萃后有机相用氢氧化钠再次反萃,得到的氢氧化钪用盐酸溶解,加碳酸钠或氨水调pH值为1~1.5,加10%的草酸沉淀,过滤,洗涤,于800℃灼烧1 h,得成品氧化钪。加氨水的氧化钪含量达到92%,而加碳酸钠的氧化钪含量达到68%,说明钠元素影响产品质量,建议采用氨水调节。  相似文献   

3.
提高钛白废酸提钪萃取选择性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究旨在选择合适的助萃剂LH,提高二(2-乙基己基)磷酸(P204)-磷酸三丁酯(TBP)-磺化煤油体系对钛白废酸提钪的选择性,提高钪钛分离系数和钪铁分离系数。研究采用的工艺为二次萃取富集、二次反萃成钪、化学精制提纯钪。通过正交试验确定最佳萃取工艺条件:萃取剂最佳配比V(P204)∶V(TBP)∶V(磺化煤油)=1.3∶0.7∶10,一次萃取相比为V(O)∶V(A)=1∶21,不加助萃剂二次萃取相比为V(O)∶V(A)=1∶5,加助萃剂时其加量为水相体积的1.7%,此时钪钛分离系数达到124 812,钪铁分离系数达到8 202。  相似文献   

4.
钛白废酸中钪的提取工艺改进   总被引:6,自引:0,他引:6  
研究旨在改进现有二(2-乙基己基)磷酸(P204)-磷酸三丁酯(TBP)煤油体系提取钛白废酸中钪的工艺流程,降低洗涤操作费用,提高钪的富集比。研究了采用二次萃取富集、一次水解除杂、二次草酸提纯工艺提取钛白废酸中的钪。确定了最佳工艺条件:有机相的最佳体积分数为25%P204+4%,TBP+61%煤油;2mol/L氢氧化钠+1.5mol/L氯化钠反萃;用盐酸调节反萃液pH为1,加热水解除钛;调水解液酸度(氢离子浓度)为7mo]/L,二次萃取除杂。在最佳条件下,可使钪与钛质量比由原废酸中的1:136富集到20:1。与现有工艺相比,省去了硫酸洗钛步骤,降低了提钪成本。  相似文献   

5.
首先通过臭氧氧化作用把钛白废酸中的二价铁转化成三价铁,然后采用萃取法去除其中的三价铁。考察了络合剂(盐酸)浓度、萃取剂、萃取相比等对三价铁萃取率的影响,并初步探索了反萃法回收萃取剂及萃取剂的循环利用。结果表明:当盐酸浓度为3.4 mol/L时,几乎可完全络合溶液中的三价铁;在萃取剂磷酸三丁酯中加入苯作为稀释剂,可有效降低磷酸三丁酯的粘度,消除萃取过程中的乳化现象;磷酸三丁酯萃取三价铁的传质过程很快,2-3 min即达平衡;当萃取相比O/W(萃取剂与钛白废酸体积之比)=0.6∶1时,三价铁萃取率可达97%以上。当反萃相比W/O=4∶1时,三价铁反萃率接近100%。磷酸三丁酯经过5次萃取-反萃循环后,三价铁的萃取率没有明显下降。去除三价铁后的钛白废酸,经蒸馏浓缩到质量分数70%左右,再与浓硫酸混合后可用于钛白粉的生产,蒸馏过程中回收的盐酸循环使用。反萃出来的三价铁可作为生产铁红的原料。  相似文献   

6.
针对现行湿法炼锌综合回收铟过程中存在的铟分散损失严重和直收率低的问题,采用直接萃取法从次氧化锌酸性浸出液中回收铟,考察了萃取剂浓度、混合时间、硫酸浓度和萃取温度等因素对铟及主要金属离子萃取率及盐酸浓度和相比对铟反萃率的影响,绘制了萃取平衡等温线和反萃平衡等温线,进行了小型模拟实验和连续逆流萃取-反萃实验,重点考察主要金属离子在萃取和反萃过程中的分布与走向.结果表明,以10%P204为有机相,在相比(A/O)为2/1、逆流萃取级数为3级的条件下,浸出液中铟萃取率达99.9%,杂质铁、锌和镉的萃取率分别为1.5%,0.5%和1.1%.得到的负载有机相采用6 mol/L盐酸反萃,相比为1/5时4级反萃后,铟反萃率达100%,镉、锌和铁基本被全部反萃,反萃后的贫有机相可循环使用.  相似文献   

7.
对磷酸浸取含稀土磷矿得到的酸解溶液中稀土萃取回收进行研究。通过对萃取剂的选择,萃取和反萃条件的试验优化选取,从脱钙后得到的粗磷酸中利用萃取剂P204进行萃取,当相比为2∶1,P204浓度2 mol/L时,经过六级萃取后,萃取率达到97.13%。在相比O/A=1∶1,以6 mol/L HCl进行反萃时,一级反萃率可达到50%以上,采用六级可达近90%。  相似文献   

8.
采用P507萃取剂对硫酸体系中的Ga3+与Fe2+, Zn2+进行萃取分离,考察了料液酸度、萃取剂浓度、时间、温度对萃取的影响,绘制萃取等温线;通过比较负载有机相中3种离子用不同浓度HCl和H2SO4反萃的效果及规律,提出用HCl洗脱Fe2+和Zn2+后,再用H2SO4反萃Ga3+的分离方案,并绘制反萃等温线. 结果表明,以40%(j) P507+磺化煤油为有机相,在相比O/A=1:1、温度25℃、时间20 min条件下,经过4级逆流萃取,Ga3+萃取率可达98.48%,同时19.56%的Fe2+和38.42%的Zn2+共萃进入有机相. 负载有机相用6 mol/L HCl洗涤3次可完全洗脱Fe2+和Zn2+而不损失Ga3+,除Fe2+和Zn2+后的负载有机相用100 g/L H2SO4按O/A=4:1、25℃、10 min,经过4级逆流反萃,Ga3+反萃率达97.64%.  相似文献   

9.
袁飞刚 《化工进展》2019,38(10):4437-4443
二(2-乙基己基)磷酸(P204)常作为溶液净化除铁的萃取剂,P204-磺化煤油体系中Fe3+与有机相形成络合能力较强的萃合物,使得Fe3+反萃比较困难,需采用较高浓度的酸作为反萃剂,但高浓度的酸会破坏有机分子的结构,影响萃取剂循环利用。针对P204-磺化煤油负铁有机相反萃困难的问题,提出利用草酸为反萃剂对负载1g/L铁的P204-磺化煤油有机相的反萃行为进行研究,考察了反萃转速、草酸浓度、反萃温度、反萃时间和相比对Fe3+反萃率的影响。结果表明:以反萃转速200r/min,草酸0.4mol/L,反萃时间10min,反萃温度40℃,反萃相比1∶1,采用二级逆流萃取方式,铁的反萃率可以达到99%以上;Fe3+反萃过程是吸热反应,其反应的焓变为81.58kJ/mol,反萃过程符合准一级反应动力学方程,对应活化能为49.5kJ/mol。进一步研究了反萃后P204-磺化煤油有机相对Fe3+的萃取性能。结果表明:经5次草酸反萃后的P204-磺化煤油有机相萃铁性能几乎不变,对比于高浓度的酸反萃,草酸反萃简化了反萃流程,降低了萃取剂的消耗。  相似文献   

10.
在盐酸介质中以磷酸三丁酯(TBP)为萃取剂、磺化煤油为稀释剂,从钛铁矿与氢氧化钾亚熔盐反应产物的酸解液中萃取分离Fe3+,并利用萃取后的含钛液水解制备二氧化钛. 考察了萃取剂浓度、盐酸浓度、有机相和水相体积比(O/A)和萃取时间对铁萃取率的影响. 结果表明,钾系亚熔盐法分解钛铁矿的分解率在96%以上. 萃取率随着TBP浓度及盐酸浓度的增加和O/A值的减小而增大;通过调节萃取条件,萃取率可以达到99%以上. 用1.0 mol/L的NaCl溶液进行反萃,反萃率可达98%以上. 萃取后含钛液经水解可以制得纯度高于98%的金红石型TiO2球状颗粒.  相似文献   

11.
钛白废酸的综合利用研究现状及展望   总被引:2,自引:0,他引:2  
硫酸法钛白生产中,每生产1t钛白约产生硫酸质量分数在20%左右的废酸8~10 t,废酸的治理和综合利用是解决钛白生产环境污染的一项重要工作.综述了近年来国内外对钛白废酸治理与综合利用所采取的一些措施,介绍了硫酸回收常用的浓缩、扩散渗析及萃取等方法;总结了以钛白废酸为原料生产硫酸亚铁铵、石膏、人造金红石、过磷酸钙、聚合硫酸铁及铁红颜料的各种工艺;重点阐述了从钛白废酸中分离提取钛、钒、钪、铁等有价金属的方法.提出了治理废酸的同时,综合利用钛白废酸中的各种资源,变废为宝,指明钛白废酸综合利用的发展方向.  相似文献   

12.
溶剂萃取法分离锌锰金属离子的实验研究   总被引:1,自引:0,他引:1  
以软锰矿和锌精矿同槽酸浸取得到硫酸锌、硫酸锰混合液,研究了从混合溶液中萃取分离锌离子、锰离子的萃取剂的选择以及适宜的萃取条件.实验结果表明,磷酸二(2-乙基己基)酯(P204)萃取锌的能力优于磷酸三丁酯(TBP),在室温、相比A/O=2∶ 1、萃取时间10 min、萃取级数5级、溶液pH为4.0,P204的体积分数为40%时,萃取率达到95%,萃取相锌质量浓度为27.15 g/L.反萃液为0.8 mol/L的稀硫酸,4级反萃,反萃液锌质量浓度可达到89.9 g/L,在此基础上提出了从软锰矿和锌精矿同槽酸浸取液中用P204萃取锌的工艺.  相似文献   

13.
广东某火山岩型低品位铀多金属矿,矿石经硫酸化焙烧得到浸出液,浸出液铀含量:45.66mg/L。最终确定铀萃取工艺条件:有机相:20%P_(204)+5%TBP+75%煤油,相比:O/A=1/10,NaF加入量15 g/L,时间:3min,温度:室温,三级逆流萃取,萃余液铀含量较低为0.2~0.4 mg/L,萃取率达到99%以上,萃取率较高、萃取效果稳定;铀反萃取工艺条件:反萃剂:20%碳酸钠,相比:O/A=5/1,温度:室温,时间:3min,三级逆流反萃,贫有机相铀金属溶度较低为3~4 mg/L,反萃率达到99%以上,反萃率较高、反萃取效果较好。铀萃原液经萃取、反萃取铀得到较好富集、分离,为下一步制备重铀酸铵产品打下坚实基础。  相似文献   

14.
本文介绍了常用的硫酸回收利用技术及从钛白废酸中回收钛、铁、钪等有价金属的方法,总结了以钛白废酸为原料生产硫酸亚铁净水剂、铁系颜料、普通过磷酸钙及浸出矿石和废渣的技术,最后提出了钛白废酸回收及综合利用的发展方向。  相似文献   

15.
李学玲  刘兴元  赵锋  张建强 《化工学报》2019,70(4):1464-1471
为探究亚砜类化合物对水中重金属镉的萃取效率和萃取机理,报道了利用二异辛基亚砜(DIOSO)萃取水溶液中镉的情况,实验制备了DIOSO,以其为萃取剂探索其对水溶液中镉的萃取情况,得出最佳萃取条件,在此条件下最高萃取率为99.7%。为达到萃取剂的回收循环利用,实验研究了不同反萃剂对Cd(Ⅱ)的反萃情况,得出利用0.2 mol/L NaOH为反萃剂时能把有机相中的Cd(Ⅱ)全部洗脱出来,反萃率达99.86%。在此基础上,结合光谱和热力学分析,DIOSO对Cd(Ⅱ)的萃取过程可能是离子间发生了缔合作用。DIOSO对水中Cd(Ⅱ)的成功萃取,可以为工业废水污染中Cd(Ⅱ)的处理提供重要理论研究基础。  相似文献   

16.
萃取-膜蒸馏法处理钛白废酸的研究   总被引:2,自引:0,他引:2  
提出了三异辛胺-仲辛醇-航空煤油体系萃取硫酸与减压膜蒸馏浓缩相结合的钛白废酸治理新方案。对萃取工艺参数、膜蒸馏浓缩稀硫酸的基本规律及萃取回收硫酸的浓缩程度进行了研究。结果表明:1.49mol·L-1的钛白废酸经8级萃取和6级反萃取,酸回收率可达92.15%,稀硫酸浓度为1.21mol·L-1,再经减压膜蒸馏浓缩可得到10.82mol·L-1(质量分数67.3%)的硫酸,达到了返回钛白生产循环使用的要求。  相似文献   

17.
采用N235从含Mo,Mn酸浸液中萃取回收Mo   总被引:2,自引:0,他引:2  
基于软锰矿的强氧化性和辉钼矿的还原性及资源的综合利用,开发出软锰矿与辉钼矿共同焙烧新工艺,焙砂的处理及Mo, Mn分离是该新工艺的关键. 采用N235(20%)+仲辛醇(10%)+磺化煤油(70%)作为萃取剂,从含Mn, Mo焙砂酸浸液中萃取回收Mo,实验得出优化工艺条件为:萃取温度室温(25℃),相比O/W 1:2,错流萃取级数3级,水相中硫酸浓度CH2SO4≤100 g/L;反萃时先用70 g/L的硫酸溶液对萃取有机相进行洗涤,反萃剂采用17%的氨水,反萃温度为室温,相比O/W为1:2,萃取级数为3,此条件下Mo的萃取率及反萃率分别达到99.9%和99.4%.  相似文献   

18.
用氯化钠和稀氟硅酸反应制备氟硅酸钠,产生的低浓度酸性废水处理相当困难。研究了以有机胺作为萃取剂,回收利用氟硅酸钠副产含氯废水的新方法。实验结果表明:在有机相与水相的体积比为1∶1、含氯废水中氯离子质量分数为3.0%左右、萃取温度为常温(20℃)、萃取时间为10 min的条件下,含氯废水中氯化氢的萃取率可达到100%,回收后的废水可返回氟硅酸钠生产中。采用氨质量分数为8%的氯化铵溶液、反萃温度控制在40℃、反萃时间为30 min,可达到较好的反萃效果。对实现废水资源的循环利用具有重要的现实意义。  相似文献   

19.
以铜熔炼烟灰浸出液为研究对象,采用N902萃取剂从中分离回收铜,并将铜元素进行富集。研究了萃取剂浓度、相比(O/A)、溶液pH值、振荡时间对铜萃取分离的影响,以及反萃剂浓度、相比、振荡时间对铜反萃率的影响。试验结果表明,在萃取剂质量分数12%、相比(O)/(A)=1∶2、溶液pH值为2.0、振荡时间6 min的萃取条件下,通过两级逆流萃取,铜、锌、铁的萃取率分别为98.26%、1.29%、2.28%;铜与铁、锌的分离系数分别达到4346和2425,实现了铜与铁、锌的有效分离。在选定反萃剂硫酸铜浓度为2.5 mol/L、相比(O)/(A)=2∶1、振荡时间6 min的条件下,通过两级逆流反萃,铜的反萃率为94.68%,反萃后铜质量浓度达到7.04 g/L,相较于浸出液中铜离子质量浓度提高了约3.72倍,实现了铜离子的富集,得到的硫酸铜溶液可用于电积铜生产。  相似文献   

20.
醋酸清洁生产工艺的研究   总被引:5,自引:0,他引:5  
采用络合萃取法处理稀醋酸废水 ,使用填料萃取塔和反萃技术分离有机酸 ,在醋酸生产工艺中实现清洁生产。针对萃取剂的选择、填料萃取塔的操作特性和初步的反萃实验做了研究。使用三正辛胺 (TOA)和异辛醇为助溶剂 ,煤油为稀释剂(质量比为 3∶5∶2 ) ,在 4∶1的水相 /有机相相比下 ,4级错流萃取实验和模拟 3级逆流萃取后水相中残余醋酸的质量分数均降至6× 1 0 - 5,达到回用要求  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号