首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用浸渍-化学还原法制备了非晶态镍-硼合金柱撑膨润土催化剂,考察了催化剂不同制备条件对其催化硝基苯加氢制苯胺反应性能的影响;并对催化剂的晶相、形貌和比表面积等方面进行了表征。结果表明,非晶态镍-硼合金柱撑膨润土催化剂具有较大的比表面积,非晶态镍-硼在柱撑膨润土孔道中分散性较好,具有较好的催化加氢性能和稳定性。非晶态镍-硼柱撑膨润土催化剂在加氢反应的初始压力为2.0 MPa、温度为110 ℃、反应时间为2 h条件下,催化硝基苯加氢制苯胺的转化率和选择性分别达到92.6%和96.1%,并且催化剂在连续使用6次后硝基苯的转化率和苯胺的选择性分别为88.9%和93.8%。  相似文献   

2.
通过金属诱导化学镀法制备了负载型Ni-P/ZrO_2非晶态合金催化剂,并用X射线衍射(XRD)、透射电镜(TEM)、差热分析(DSC)、比表面积-孔径分布等测试方法对催化剂进行物相表征,以硝基苯液相加氢制苯胺为探针反应考察了所制备催化剂的加氢性能。结果表明,负载后的Ni-P非晶态合金催化剂的粒径明显减小,同时其热稳定性得到明显提高。由于Ag的诱导作用,使活性组分Ni-P定向沉积,Ni-P/ZrO_2中Ni-P粒子高度分散。在硝基苯加氢反应中,当Ni的负载量为30%、催化剂质量为0.17 g、反应温度为383 K、氢气分压为2.0 MPa下反应120 min,硝基苯的转化率和苯胺的选择性均为100%。  相似文献   

3.
制备条件对Ni-P非晶态结构及其对催化硝基苯加氢的影响   总被引:1,自引:0,他引:1  
采用化学还原法制备了Ni-P非晶态催化剂,研究了制备过程中pH值及P/Ni摩尔比对催化剂结构及硝基苯催化加氢合成苯胺的影响。结果表明,在Ni-P非晶态催化剂的制备过程中,制备液初始pH值和P/Ni摩尔比是影响催化剂物化性质的主要因素。高pH值下制备的Ni-P催化剂为非晶态结构,适宜的制备液初始pH值为11.0,此时催化剂的热稳定性好,比表面积为13.7m2/g。当P/Ni摩尔比低于4时,Ni-P催化剂中Ni-P非晶态相的含量较少,适宜的P/Ni摩尔比为4。添加P/Ni摩尔比为4,在制备液pH值为11.0条件下制备0.2gNi-P非晶态催化剂,反应3h后硝基苯的转化率及苯胺的收率分别为55.2%和53.8%。  相似文献   

4.
Ni-P非晶态合金催化剂因其晶体结构的特殊,具有较好的催化活性。以硝基苯液相催化加氢合成苯胺为目标反应,运用Matlab软件并借助Levenberg-Marquardt算法估计反应动力学模型的参数,根据参数估计结果筛选动力学机理模型,对新型Ni-P非晶态合金催化剂的本征动力学进行研究,为催化剂的进一步开发和反应器设计提供理论依据。结果表明,Ni-P非晶态合金催化剂的颗粒较小,过程内扩散的影响可以忽略不计,当搅拌速率达到600 r·min-1时,反应过程的外扩散影响也可忽略。在(373.15~403.15) K、氢压1.0 MPa、非晶态Ni-P催化剂质量0.2 g、硝基苯质量2.0 g和无水乙醇质量8.0 g条件下,硝基苯分子不吸附,硝基苯分子与解离吸附的氢原子在催化剂表面反应,苯胺脱附为硝基苯加氢合成苯胺反应的速率控制步骤,本征动力学模型为:rj=kcA/1+bH2αH2pH2,表面反应的指前因子为1.08×105 min-1,活化能为51.81 kJ·mol-1,氢气吸附热为64.12 kJ·mol-1。  相似文献   

5.
负载型非晶态合金的结构及催化加氢性能   总被引:5,自引:1,他引:5  
梁薇 《工业催化》2005,13(9):56-60
采用还原法制备了负载型Ni-B、Ni-P体系非晶态合金催化剂,对其结构进行了物化表征。该方法制备的非晶态合金克服了以往制备方法的非晶态合金比表面积小、热稳定性差的缺点。以甲苯、苯乙烯、苯乙炔、硝基苯、环己酮和己二腈为模型化合物,研究了负载型非晶态合金的催化加氢反应性能,并与多晶Ni催化剂进行对比。结果表明,非晶态合金具有更优越的催化加氢性能,并有可能作为含不同不饱和基团化合物的选择加氢催化剂。  相似文献   

6.
以KBH4为还原剂,用浸渍-还原法制备了Ni-B/SiO2催化剂,并用于硝基苯催化加氢制苯胺的反应,讨论了制备条件(Ni、B用量及焙烧温度)及反应条件(压力、温度)对硝基苯的转化率及苯胺选择性的影响。结果表明,Ni-B/SiO2催化剂具有很高的催化活性。适当增加Ni和B的用量,可以提高催化剂对硝基苯的转化率和转化频率及苯胺的选择性。催化剂前驱体的焙烧温度在453K时,硝基苯的转化率可达到98.5%,对苯胺选择性为97.0%。过高的焙烧温度不利于催化剂活性的提高。适当提高加氢反应压力以及温度,可以提高催化剂的加氢活性及对苯胺的选择性。  相似文献   

7.
以蜘蛛丝作模板,采用化学镀法在模板表面沉积得到均匀的非晶态Ni-P合金镀层,用碱液溶解法去除内部的蜘蛛丝模板,制得非晶态Ni-P合金微管.分别采用能谱仪、扫描电镜、X射线衍射法对产物进行表征.以硝基苯液相加氢为探针反应,考察了非晶态Ni-P合金微管的催化加氢性能,结果表明,非晶态Ni-P合金微管具有良好的催化活性和循环...  相似文献   

8.
非晶态Ni-M-P催化剂用于间氯硝基苯加氢的研究   总被引:1,自引:0,他引:1  
采用化学还原法制备了Ni-M-P (M=Cu, Ca, Zn, Sn, Co)非晶态合金催化剂,用X射线能谱(EDS)、X射线衍射(XRD)和透射电子显微镜(TEM)等方法对催化剂的组成、结构及形貌进行了表征,以间氯硝基苯液相催化加氢合成间氯苯胺为目标反应,对所制备催化剂性能进行系统评价,以解决催化加氢合成间氯苯胺过程中的氢解脱卤问题.研究结果表明,在所制备的三元非晶态合金催化剂中,在不加脱卤抑制剂的情况下,反应温度110 ℃、氢气压力1.0 MPa的反应条件下,当Ni:Co = 1:1(摩尔比)时,Ni-Co-P表现出较高的加氢性能和抑制脱卤性能,间氯硝基苯的转化率可达到99.0 %,间氯苯胺的选择性也达到了99.3 %,其转化率和选择性较其它三元催化剂和Ni-P催化剂有较大提高.从催化剂的微观结构和电子效应等方面讨论和解释了添加第三组分金属对Ni-P非晶态合金催化剂催化性能的影响.  相似文献   

9.
非晶态Ni-B催化剂具有优异的催化加氢性能,但其稳定性差限制了其推广应用。该文采用特殊结构的K2Ti6O13为载体,通过浸渍-化学还原法制备了负载型非晶态合金催化剂Ni-B/K2Ti6O13,考察其催化硝基苯加氢的性能。采用XRD、TG、TPR、比表面积-孔径分布测试对催化剂进行了表征。结果表明,在非晶态Ni-B催化剂中加入适量的K2Ti6O13稳定了催化剂表面的Ni-B物种,提高了非晶态Ni-B催化剂的活性和稳定性。Ni适宜负载量(Ni的理论质量与K2Ti6O13质量的百分比)为30%时,在反应温度为100℃、氢气分压为2.0 MPa的条件下反应120 min,硝基苯的转化率和苯胺的选择性分别可达99.5%和98.0%,并且催化剂循环使用6次后转化率和选择性分别为98.0%和93.0%。  相似文献   

10.
在柱撑型非晶态合金Ni-B合金催化剂上,采用响应面法,对硝基苯加氢合成苯胺的工艺条件进行优化。在单因素实验的基础上,以苯胺收率为响应值,选取反应时间、反应温度、氢气初始压力和催化剂用量为自变量,采用Box-Behnken设计和响应面法,考察各自变量及其交互作用对苯胺收率的影响,得到了多项式回归方程。结果表明,硝基苯加氢合成苯胺的最佳工艺条件为:反应时间129min,反应温度114℃,氢气初始压力2.0MPa,催化剂用量1.9%。在此工艺条件下,苯胺的收率为90.11%,与预测值90.38%的绝对误差为0.27%,表明采用响应面法优化非晶态合金柱撑膨润土催化剂催化硝基苯合成苯胺的工艺参数,具有较高的准确性。该催化剂具有较高的稳定性,循环使用6次后,苯胺的收率仍保持在84.18%。  相似文献   

11.
非晶态合金催化剂的制备与改性技术进展   总被引:1,自引:0,他引:1  
非晶态合金催化剂是一种具有高催化活性和良好产品选择性的新型催化材料.介绍了金属-类金属非晶态合金催化剂的制备和负载与金属离子掺杂改性方法,阐述了改性前后非晶态合金催化剂的结构特征及催化性能.负载改性可防止非晶态合金团聚,提高其分散度;金属离子掺杂可增加不饱和Ni活性中心数,提高Ni活性中心分散度,稳定催化剂的非晶态结构,可以有效地提高非晶态合金催化剂催化活性和产品选择性,为新型非晶态合金催化剂的研制提供依据.贵金属类非晶态催化剂具有高的吸氢能力和高催化活性与稳定性.  相似文献   

12.
非晶态Ni-B催化剂具有优异的催化加氢性能,但其稳定性差限制了其推广应用。本文采用特殊结构的K2Ti6O13为载体,通过浸渍-化学还原法制备了非晶态Ni-B/K2Ti6O13催化剂,考察其催化硝基苯选择加氢的性能。采用XRD、TG、TPR、比表面积-孔径分布测试等手段对催化剂进行了表征。研究表明,在非晶态Ni-B催化剂中加入适量的K2Ti6O13稳定了催化剂表面的Ni-B物种,提高了非晶态Ni-B催化剂的活性和稳定性。适宜负载量(Ni的理论负载量)为30%时,在反应温度为100℃、氢气分压为2.0 MPa的条件下反应120 min,硝基苯的转化率和苯胺的选择性分别可达99.5 %和98.0%,并且反应6次后转化率和选择性分别为98%和93%。  相似文献   

13.
孙昱  李斌栋  吕春绪  户安军 《化学试剂》2007,29(2):75-77,104
Ni-B/SiO2非晶态合金对一系列氯代芳烃硝基化合物进行加氢,脱氯顺序依次为:2-氯-5-硝基甲苯>邻氯硝基苯>间氯硝基苯=对氯硝基苯>2,5-二氯硝基苯。将Ni-B/SiO2非晶态合金和Raney Ni催化加氢邻氯硝基苯进行了对比,发现在—NO2转化成—NH2的反应终了之前,用非晶态镍催化剂的脱氯速度小于用Raney Ni催化剂的脱氯速度,但加氢反应终了之后,在非晶态镍催化剂上的脱氯速度大于Raney Ni催化剂上的脱氯速度。镍基催化剂的软硬度是催化剂选择性好坏的主要原因,镍基催化剂软度大有利于催化剂选择性的提高。  相似文献   

14.
分别以碳纳米管(CNTs),γ-Al2O3,Si O2,Ti O2为载体,Ni、B为活性组分,采用浸渍-化学还原法制备了一系列负载型Ni-B非晶态合金催化剂,并将其用于三种氯代硝基苯液相加氢反应。采用电感耦合等离子体光谱、X-射线衍射、透射电子显微镜、差示扫描量热等手段研究了催化剂的非晶性质、Ni的担载量及催化剂的热稳定性。结果表明,负载型Ni-B非晶态合金催化剂在氯代硝基苯液相加氢反应中表现出较高的活性和良好的选择性,其中以CNTs为载体的非晶态合金Ni-B催化剂可使三种氯代硝基苯的转化率均达到了99.9%,加氢脱氯率小于2.5%。讨论了CNTs和Ni-B非晶态合金之间的相互作用与催化剂的催化性能的关系。  相似文献   

15.
非晶态合金催化剂是一种具有高催化活性和良好产品选择性的新型催化材料.本文综述了常用的几种制备Ni系非晶态合金的改进的化学还原法、非晶态合金的改性研究、非晶态合金的结构表征及其在醛酮等的催化加氢方面的应用进展,并对其工业前景给与展望.  相似文献   

16.
用化学还原法制得了Pd-B/Al2O3非晶态催化剂,并用于邻氯硝基苯液相加氢反应的研究.采用XRD、SEM、SAED等技术手段对催化剂进行了表征,表明Pd-B以超细颗粒的形式分散在载体上,并且明确了催化剂的非晶态性质、结构形态等.以邻氯硝基苯液相加氢为目标反应,对所制备催化剂的催化性能进行系统评价.在反应温度90℃、氢气压力1.0MPa的反应条件下,邻氯硝基苯的转化率达99.9%,邻氯苯胺的选择性达98.0%;在不加脱卤抑制剂的情况下,脱卤率小于2%,表明负载Pd系非晶态催化剂具有较好的邻氯硝基苯加氢活性及良好的选择性,优于Pd基晶态催化剂和Ni基晶态催化剂.从催化剂的微观结构、金属-载体相互作用、活性组分在载体表面的几何效应和电子效应等方面对非晶态催化剂响影响邻氯硝基苯加氢性能进行了讨论和解释.  相似文献   

17.
制备了Ni—B/SiO2非晶态催化剂、Raney Ni催化剂和漆原镍催化剂,采用XRD、SEM等对非晶态特征进行表征。分别用这3种镍基催化剂对苯乙酮进行催化加氢实验,实验表明,Ni—B/SiO2非晶态催化剂的催化活性和稳定性明显优于其他两种镍基催化剂。  相似文献   

18.
3,5-二氯苯胺是一种重要农药中间体.采用多氯代硝基苯催化加氢脱氯合成3,5-二氯苯胺是一种清洁合成工艺.研究了合成路线中五氯硝基苯催化加氢制备五氯苯胺工艺,主要考察了催化剂、溶剂、反应温度和反应压力对加氢反应的影响.结果表明:与骨架镍相比,Pd/C催化剂具有较好的催化活性和选择性,虽然负载量为10%Pd/C比5%Pd/C催化活性高,但易发生深度脱氯;反应适宜的溶剂为环己烷;在优化的反应条件下,五氯硝基苯转化率可达99%以上,五氯苯胺选择性可达95%以上.  相似文献   

19.
通过化学还原法制备了Ni B合金催化剂,并将其用于催化甲酸及其盐还原硝基苯制备苯胺。用X-射线粉末衍射仪(XRD)对Ni B进行了表征,结果表明Ni B为非晶态合金。考察了Ni B催化甲酸、甲酸钠、甲酸铵和甲酸肼还原硝基苯的效果,结果表明甲酸肼的还原效果最好。以Ni B催化甲酸肼还原10种芳香族硝基化合物得到相应的芳胺,收率为35%~66%。  相似文献   

20.
Mo改性雷尼镍对2,4-二氟硝基苯液相催化加氢的影响   总被引:1,自引:0,他引:1  
考察了多种普通商用雷尼镍催化剂在2,4-二氟硝基苯液相催化加氢反应的催化性能,研究了Mo改性后的影响。结果表明,雷尼镍催化剂的催化性能与其颗粒尺寸有紧密的联系,颗粒尺寸越小则单位质量催化剂的加氢活性位越多,其2,4-二氟硝基苯液相催化加氢性能(活性和选择性)相应越好,同时反应过程中存在Ni-Al骨架破损引起活性组分Ni流失而造成催化剂失活的现象;经Mo改性后,2,4-二氟硝基苯液相催化加氢反应中的催化活性和稳定性均有明显提高。H2-TPD、XPS等表征实验表明,Mo改性后雷尼镍催化剂活性的提高与其对氢的解离吸附能力增强有关,Mo的添加同时稳定了Ni-Al合金骨架,提高了催化剂的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号