首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
气相吸附分离间二氯苯   总被引:1,自引:1,他引:0  
考察了在疏水硅沸石分子筛吸附剂S -I上 ,以水蒸气为脱附剂 ,从混合二氯苯中气相吸附分离间二氯苯的工艺条件。试验表明 ,较佳的条件为 :吸附温度 ( 193± 1)℃、空速 1 8h- 1 、脱附时间 5min。在脱附温度 ( 193± 1)℃、空速 1 6h- 1 、初级脱附时间 3min、二级脱附时间 2 7min时 ,间二氯苯单程收率不低于 3 0 %。  相似文献   

2.
采用吸附分离工艺,以5 A分子筛为吸附剂,氮气为脱附剂,将重整拔头油分离成高纯度的正构烷烃和异构烷烃。结果表明,在吸附温度为180~280℃,进料空速为25~150 h-1的条件下,温度越低,穿透吸附容量越大。吸附分离最佳操作条件为:温度220℃,原料气体空速50 h-1,进料时间25 min,脱附气体空速50 h-1,脱附时间25 min。吸余油中正构烷烃质量分数为3.90%,异戊烷和二甲基戊烷质量分数分别为24.65%,28.21%,辛烷值为91.0;脱附油中正构烷烃质量分数可以达到99.0%以上。  相似文献   

3.
在固定床单柱吸附分离研究的基础上,通过程序控制的5A分子筛固定床双塔并联吸附分离试验装置,对中国石化上海高桥分公司石脑油中正构烷烃吸附/脱附分离过程进行连续操作,考察了多周期运转的吸附分离效果,并对工艺条件进行考察。研究结果表明,吸余油中正构烷烃含量经过5个吸附/脱附周期后趋于稳定,优化的吸附分离操作条件为:石脑油原料体积空速153.4 h-1,吸附/脱附温度270 ℃,吸附/脱附切换时间30 min,脱附气体体积空速127.5 h-1,中间油切割时间2 min。在该工艺条件下,稳定操作的吸余油中正构烷烃质量分数小于3%,芳烃潜含量比石脑油提高12.31百分点;脱附油中正构烷烃质量分数大于95%,作蒸汽裂解制乙烯原料时,与石脑油相比,乙烯收率提高约14百分点。  相似文献   

4.
在确定石脑油中氯化物存在形式的基础上进行了氯化物的吸附脱除研究。结果表明:该石脑油中的氯化物全部以有机氯化物形式存在,实验室自制的N型及P型吸附剂对有机氯化物均具有较好的吸附脱除效果,将两种吸附剂按照质量比2:1进行复配后脱除效果更佳;利用粒径20~40目的m(N):m(P)=2:1的吸附剂,在吸附温度为10 ℃、剂油质量比为1:10、吸附时间为2 h的适宜操作条件下,可将石脑油中氯含量由17.026 mg/L降至1.652 mg/L,氯元素的脱除率达90.03%,并且多次吸附及再生处理后的吸附剂对有机氯化物的脱除性能仍然良好,具有较好的应用前景。  相似文献   

5.
采用负载浸渍法,将活性金属铜引入活性炭孔道内部,并且对其进行N2吸附-脱附及透射电镜表征。使用改性后的AC-2活性炭吸附剂吸附脱除苯模型化合物,当入口苯质量浓度为6.5 g/m3、体积空速为1 000 h-1、吸附温度为20℃时,穿透时间为13 h,吸附量为132 g。经过8个吸附-再生周期,AC-2活性炭吸附剂仍可将固定床吸附器出口苯质量浓度控制在30mg/m3以下。使用改性后的AC-2活性炭吸附剂吸收-吸附脱除石脑油中的VOCs(挥发性有机物),在进气口VOCs质量浓度为100~150 g/m3、体积空速为1 000 h-1、吸附温度为20℃的条件下,其穿透时间为4.5 h。经过4个柴油吸收-吸附-再生周期,AC-2活性炭吸附剂仍维持较稳定的脱VOCs性能。热脱附模型相较于常温脱附模式,更加适用于活性炭吸附剂的脱附再生。  相似文献   

6.
 采用GC-ECD气相色谱法对石脑油中的有机氯化物进行定性定量分析,并根据其形态结构选择适宜的吸附剂进行吸附脱氯,探索吸附剂吸附脱氯的适宜条件。结果表明,石脑油中的有机氯化物主要为氯仿、四氯化碳、四氯乙烷和二氯苯,其质量浓度分别为0.16、0.02、3.32和4.52 mg/L。制备的吸附剂N适用于石脑油吸附脱氯,其适宜的吸附条件为吸附温度40℃、吸附时间3 h、剂油质量比(m(Adsorbent)/m(Oil))为0.1。在此条件下石脑油中有机氯质量浓度从2.70 mg/L降至0.68 mg/L。吸附剂M对脱后石脑油进行再次吸附后,其氯质量浓度可以减少到0.47 mg/L,达到石脑油工业生产的要求。  相似文献   

7.
流化催化裂化汽油吸附法深度脱硫工艺的研究   总被引:8,自引:5,他引:3  
以臭氧氧化活性炭为吸附剂,对流化催化裂化(FCC)汽油进行吸附脱硫研究,探索了最佳吸附条件和最佳再生条件。实验结果表明,在活性炭颗粒大小为80~100目、吸附温度为80℃、原料液态空速为1.70h-1的最佳吸附条件下,可使初始硫含量为796μg/g的FCC汽油的初始流出液的硫含量降到18μg/g,初始脱硫率达97.7%;在脱附剂为乙醇、再生温度为60℃、脱附剂液态空速为1.70h-1的最佳再生条件下再生活性炭,循环使用3次时仍可使初始流出液的硫含量降到45μg/g,初始脱硫率达94.3%。  相似文献   

8.
FCC汽油吸附脱硫工艺的研究   总被引:16,自引:3,他引:13  
在实验室固定床中试装置上以硫含量为1290μg/g的FCC汽油为原料对FCC汽油吸附脱硫工艺(LADS技术)的工艺条件进行了考察。结果表明,在吸附温度为65-85℃,吸附空速为2.0h^-1,脱附空速为2.0h^-1,吸附剂与脱附剂之比为0.5。吸附剂与原料油之比为0.5时,精制油的硫含量为760μg/g,精制油的收率为99.05%;在吸附温度为65-85℃,吸附空速为1.0h^-1,脱附空速为1.0h^-1。吸附剂与脱附剂之比为1.0,吸附剂与原料油之比为1.0时。精制油的硫含量为360μg/g,精制油的收率为97.40%;两种操作条件下精制油的辛烷值几乎不损失。  相似文献   

9.
基于分子管理的理念,以5A分子筛为吸附剂,分离石脑油中的正构烷烃和非正构烃。考察了模拟移动床(SMB)中分子筛对正构烷烃的吸附分离规律以及循环比、分配比、脱附剂比等因素对分离效果的影响。在操作压力2.0 MPa、操作温度170 ℃、石脑油质量空速0.024 h-1、切换时间900 s的条件下,优化的模拟移动床操作条件为:循环比2.25、分配比3.00、脱附剂比4。对于正构烷烃质量分数为31.95%的石脑油,经SMB液相吸附分离后,脱附油中正构烷烃质量分数达到87.76%,吸余油中非正构烃质量分数达到97.83%。与石脑油原料相比,以脱附油作为裂解原料时的乙烯收率提高13.1百分点;吸余油研究法辛烷值提高19.2个单位,芳烃潜含量提高10.2百分点。  相似文献   

10.
以颗粒状硅酸锆(ZrSiO4)作为载体,通过浸渍的方法将壳聚糖负载其上,制得壳聚糖-ZrSiO4吸附剂。用该吸附剂处理废水中的铅离子(Pb2+),考察了体系pH值、温度、时间等工艺条件对吸附和脱附效果的影响。结果表明,在Pb2+溶液初始质量浓度为5.0 mg/L,pH值为6.0,吸附剂用量为24.0 g/L,吸附温度为30℃,吸附时间为1 h的优化条件下,该吸附剂对溶液中Pb2+的最大吸附率为86.4%,相应其最大吸附容量为180.1μg/g;用去离子水洗涤壳聚糖-ZrSiO4饱和吸附剂,调节脱附体系pH值为2.0,在10℃震荡10 min,该吸附剂对Pb2+的脱附率可达93.5%。  相似文献   

11.
以中国石化塔河分公司(塔河分公司)重整预加氢后分馏塔顶拔头油(轻石脑油)作为原料进行深度脱氮剂和脱氮工艺的研究,考察脱氮温度、脱氮压力、空速对脱氮效果的影响,确定的最佳脱氮工艺条件为:脱氮温度40 ℃、脱氮压力0.5~1.0 MPa、空速5.0~10.0 h-1。该技术在塔河分公司300 kt/a异构化装置上的工业应用结果表明:以重整预加氢后分馏塔塔顶拔头油作为原料进行深度脱氮处理后,氮质量分数小于0.1 μg/g,能够满足后续低温异构化工艺对氮含量的苛刻要求,得到的异构化产品RON较原料增加20个单位。  相似文献   

12.
脱除催化裂化柴油中碱性氮化合物的研究   总被引:2,自引:0,他引:2  
考察了不同条件下吸附剂对碱性氮化合物吸附性能的影响。实验结果表明 ,当吸附剂的载酸量为 30 % ,烘干温度为 10 5℃ ,焙烧温度为 2 40℃ ,焙烧时间 4h条件下 ,吸附剂的吸附能力最大。在常压、反应温度为 10 0℃ ,空速为 1.0h- 1 的条件下 ,吸附剂最大处理量为 75 .6 2mL/mL ;经处理后的柴油的质量有明显改善 ,色度号由 2 1降到 6 ,吸附剂可经过溶剂再生后反复使用。  相似文献   

13.
FCC汽油临氢吸附脱硫工艺研究   总被引:2,自引:0,他引:2  
在固定床吸附装置上对催化裂化汽油进行吸附脱硫实验,对比了三种吸附剂的脱硫效果,考察了吸附温度、空速、氢气流量对催化裂化汽油吸附脱硫性能的影响。实验结果表明,适宜的吸附脱硫工艺条件为:吸附温度320 ℃,空速2.0 h-1,氢气流量60~140 mL/min。在此条件下,吸附剂的硫容量为4.02 mg/g。  相似文献   

14.
以层析硅胶为载体,用等体积浸渍法制备金属镍负载量分别为1.4%,2.6%,3.8%,5.0%,6.2%的脱氮吸附剂;在实验室间歇式吸附装置上,考察在氮化物浓度为1 000 μg/g、吸附温度为120 ℃、油剂质量比60:1条件下,吸附剂的金属负载量对喹啉模拟柴油及吲哚模拟柴油的吸附脱氮效果,结果表明:当金属负载量为5.0%时,喹啉的平衡吸附量最大,当金属负载量为2.6%时,吲哚的平衡吸附量最大;喹啉和吲哚在吸附剂上的吸附明显具有多分子层吸附的基本特征。考察不同吸附温度下吸附剂对喹啉和吲哚的吸附效果,结果表明:吸附温度为100 ℃和120 ℃时,吸附剂对喹啉模拟柴油的吸附效果较好,140 ℃时,吸附剂对吲哚模拟柴油的吸附效果较好。  相似文献   

15.
大庆页岩油用作催化裂化(FCC)原料时,因其碱性氮含量高,会降低催化剂活性和选择性,因此,在进入催化裂化装置前要进行脱氮预处理。大庆页岩油脱氮工艺是将大庆页岩油与自制脱氮剂在反应器内充分混合反应后,再经沉降器和聚结塔分离页岩油和氮渣的过程。考察了剂/油质量比、反应时间、沉降时间、反应温度和聚结塔床层空速对大庆页岩油脱氮效率的影响。结果表明,大庆页岩油脱氮工艺适宜的操作条件为剂/油质量比0.03、反应温度70℃、反应时间10 min、沉降时间180 min、聚结塔床层空速0.5 h-1。在该条件下,大庆页岩油碱性氮质量分数从3775 μg/g 降为365 μg/g,可作为催化裂化原料。  相似文献   

16.
利用二次交换二次焙烧方法对NaY/β分子筛进行改性,制备CeY/β和BaY/β复合分子筛。采用XRD、ICP-MS表征方法对改性前后的分子筛结构进行分析;采用氮含量600 μg/g的模拟柴油,考察改性前后分子筛的吸附脱氮效果,并优化吸附脱氮条件。结果表明:改性前后分子筛的特征峰基本一致,说明改性没有改变分子筛的主体晶型;改性后分子筛的脱氮率明显增加,CeY/β分子筛的脱氮效果最佳;CeY/β分子筛的适宜吸附条件为:剂油质量比1:20,反应温度40 ℃,吸附时间3.0 h;BaY/β分子筛的适宜吸附条件为:剂油比质量1:40,反应温度40 ℃,吸附时间4.0 h。  相似文献   

17.
工业己烷在5A分子筛床层上吸附穿透曲线   总被引:2,自引:0,他引:2  
测定了工业己烷在5A分子筛固定床上的吸附穿透曲线,考察吸附温度、压力和空速对正己烷的穿透吸附量、吸附传质区长度和床层饱和度的影响,探讨工业己烷中非正己烷组分在5A分子筛上的吸附作用。结果表明:吸附温度在160℃~240℃、吸附压力在0.1MPa~0.9MPa条件下,5A分子筛对正己烷的吸附透曲线均为较陡峭的"S"型;降低吸附温度、提高吸附压力和空速,有利于增加正己烷的穿透吸附量及饱和吸附量、降低吸附传质区长度、提高床层利用率;在吸附温度200℃、压力0.5MPa、空速0.9h-1条件下,正己烷的穿透吸附量达到0.0977kg/kg,床层饱和度为88.75%,5A分子筛对工业己烷中2-甲基戊烷、3-甲基戊烷、2,3-二甲基丁烷有一定吸附作用,对其它非正己烷组分几乎不吸附。  相似文献   

18.
以降低炼厂轻烃的总硫含量为目标,使用四种吸附剂分别进行吸附脱硫实验,并考察吸附温度、体积空速(LHSV)、反应时间对脱硫效果的影响。实验结果表明TCN-2为四种吸附剂中脱硫效果较好的吸附剂,其最佳吸附条件为高温120℃,压力0.6MPa,体积空速1h-1~3h-1,反应时间16h。在此吸附条件下TCN-2脱硫率达到95%(质量分数)左右,脱硫后轻烃总硫含量降低至20μg/g~30μg/g。  相似文献   

19.
改性Y型分子筛对FCC汽油脱硫效果的研究   总被引:5,自引:2,他引:3  
采用二次离子交换法将NaY分子筛与硝酸铈溶液加热到100℃持续进行搅拌交换4 h,制成CeY分子筛,然后在不同条件下用NaY,Ce(Ⅲ)Y,Ce(Ⅳ)Y 分子筛对催化裂化汽油进行吸附脱硫实验,利用微库仑综合分析仪对处理过的FCC汽油样品进行硫含量测定。静态吸附脱硫实验结果表明,在吸附时间为4 h、室温(20℃)、剂油比为1﹕2、转速为40r/min的条件下,分子筛的吸附脱硫效果最佳,其中Ce(Ⅳ)Y分子筛的吸附脱硫效果最好。动态吸附脱硫实验结果表明,当体积空速为5.0 h-1时, Ce(Ⅳ)Y分子筛吸附容量较大,为0.46 mg(S)/g吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号