首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
在直线电机直接驱动XY平台中,负载扰动、机械延迟以及两轴驱动系统参数不匹配等因素影响轮廓加工精度.采用H∞速度反馈控制、零相位误差跟踪控制(ZPETC)与法向交叉耦合控制相结合的策略对两轴的运动进行协调控制以提高轮廓加工精度,实现跟踪误差与轮廓误差的同时减小.H∞控制在速度环通过反馈作用消除负载扰动因素的影响,使系统具有较好的鲁棒性.ZPETC基于零、极点对消和相位对消提高系统跟踪精度.法向交叉耦合控制作用于两轴之间,将轮廓误差作为直接被控量进行实时补偿控制,有效地提高了轮廓精度并简化了控制器设计.仿真结果表明,所设计的控制系统具有较好的跟踪性、鲁棒性和轮廓精度.  相似文献   

2.
针对直驱H型平台在跟踪非线性轨迹时,同步误差及系统负载变化影响轮廓跟踪精度的问题,提出一种基于融合误差的滑模轮廓控制器与最优位置控制器相结合的控制策略。将并联轴位置不同步引起的横梁(X轴)偏转角定义为等效同步误差。基于等效误差模型,构建适用于H型平台轮廓控制的融合误差模型,并以融合误差为状态变量设计自适应全局滑模轮廓控制器,在消除同步误差影响的同时,抑制负载变化对轮廓控制精度的影响。通过最优系统频域因子分解求解位置控制器的参数,提高单轴伺服系统的动态响应性能,减少位置超调量。最后,实验结果验证了所提出的控制策略能有效减小直驱H型平台伺服系统的轮廓误差和同步误差,增强系统的鲁棒性。  相似文献   

3.
为进一步提高双轴直驱型工作平台的加工精度,减小平面轮廓误差,并增强整体系统结构鲁棒性和响应速度,提出一种基于速度前瞻型双轴直线电机交叉耦合控制策略.首先建立基于双轴直线电机的数学模型,并改进自适应插补算法,设计能够适应广泛路径类型的交叉耦合轮廓误差控制器.同时利用双环滑模控制算法设计单轴电机控制器,该控制器可以提高电机对干扰做出反应的速度,并及时调整输出.为降低机械冲击和结构振动,利用速度前瞻控制器,提前根据曲率变化对路径进行S型速度规划,给出插补速度,实现了柔化运动过程,减小系统机械振荡的目的.实验结果表明,该控制方法能够明显地提高系统的控制性能,减小系统的轮廓误差,提高控制精度.  相似文献   

4.
为了减少直驱XY平台在循迹跟踪过程中所产生的轮廓误差,该文提出一种PDFF位置控制器与实时变增益轮廓误差补偿器相结合的轨迹跟踪控制方案。通过合理选择PDFF控制器的3个参数,使永磁直线电机位置伺服系统在减少超越量的同时具有响应速度快的优点。其次,为了实时准确地估算轮廓误差,利用跟踪误差与进给率等信息定义一个新的轮廓误差模型,并依此模型构建实时轮廓误差估计器,再通过与变增益交叉耦合控制结构相结合组成实时变增益轮廓误差补偿器。实验结果表明,所提出的创新性方法不仅可实时且有效地计算出轨迹跟踪系统的轮廓误差,并且使XY平台满足高精度轮廓跟踪的需求。  相似文献   

5.
基于积分时变滑模控制的永磁同步电机调速系统   总被引:2,自引:0,他引:2  
针对永磁同步电机(PMSM)矢量控制系统,设计了一种积分时变滑模变结构的速度环控制器,解决了传统PID控制器鲁棒性差、系统抗扰能力弱和动态响应性能不佳的问题。在滑模面的设计中引入误差信号的积分项,避免控制量中对加速度信号的要求,增强系统的抗干扰能力;同时引入时变项,在保证系统全局稳定的前提下提高了滑模面的收敛速度。在基于DSP的PMSM实验平台上进行实验,结果表明,所提出的积分时变滑模控制方法能够实现精确的速度控制,与传统的PID控制方法相比,能够更好、更快地跟踪给定速度信号。  相似文献   

6.
为了提高精密工件的轮廓加工精度,在分析系统轮廓误差的基础上,提出将零相位误差跟踪控制器(ZPETC)、自适应鲁棒控制器(ARC)和交叉耦合控制器(CCC)相结合的控制策略.ZPETC提高了系统动态响应的快速性,消除系统的滞后现象,实现了准确跟踪;ARC克服了系统参数变化、负载扰动等不确定性,增强了系统的品质鲁棒性和稳定性;CCC用以消除各轴之间的增益参数和动态参数不匹配的影响,以进一步减小轮廓误差.仿真结果表明所提出的控制方案十分有效,为提高零件的轮廓加工精度指供了一种新方法.  相似文献   

7.
针对直驱XY平台在加工高速度和尖角轮廓时精度较差的问题,提出一种在全局任务坐标系(GTCF)中采用迭代学习控制(ILC)和互补滑模控制(CSMC)相结合的轮廓控制方法。首先,利用实际轮廓误差的一阶导数构建轮廓误差模型,并将轮廓误差和轮廓运动轨迹作为控制变量建立GTCF,使系统能够协调运行。然后,采用ILC对轮廓跟踪过程中的未建模动态进行补偿,并利用CSMC抑制直驱XY平台伺服系统中参数变化、外部扰动等不确定性因素的影响。最后,系统实验结果表明,该控制方法具有较强的鲁棒性和快速的轮廓跟踪性,能够实现更精确的控制性能,减小系统的轮廓误差,进而改进直驱XY平台伺服系统的高精度轮廓加工性能。  相似文献   

8.
大功率随动试验台多永磁同步电机同步控制   总被引:1,自引:0,他引:1  
针对大功率随动试验台中多台永磁同步电机的同步控制问题,同时考虑试验台开放性的要求,提出相邻交叉耦合结构与滑模变结构控制相结合的同步控制策略。结合试验台的机械结构特点,分析比较相邻交叉耦合结构与偏差耦合结构。根据多电机同步系统中同步误差与跟踪误差的控制要求,建立永磁同步电机的状态空间模型,进一步给出多电机同步滑模控制器的设计方法。分析了所设计的同步控制系统的鲁棒性。仿真结果表明,相邻交叉耦合结构与变结构算法相结合的系统其同步误差小于传统的偏差耦合结构与PID算法相结合的系统,受干扰影响变小。对于多永磁同步电机同步系统,相邻交叉耦合结合滑模变结构的控制策略在改善同步性能的同时,增强系统的鲁棒性,简化系统结构,并增强系统的开放性。  相似文献   

9.
双轴直驱平台在加工高进给率或存在尖角的轮廓时,由于轨迹的复杂性和系统非线性不确定性的存在导致轮廓误差较大.因此,本文提出一种自适应迭代学习控制器(AILC)和双边界层滑模观测器(SMO)相结合的鲁棒迭代学习轮廓控制方案.首先,建立含有参数变化、摩擦力等不确定性因素的双直线伺服系统动态方程,并在任务坐标系下建立轮廓误差模型,将跟踪误差的法向分量近似为轮廓误差.采用AILC对轮廓误差进行控制,以实时提高系统的轮廓跟踪性能;使用双边界层SMO对系统扰动进行补偿,通过改变双边界层厚度削弱抖振,并且提高观测器的鲁棒性.最后,系统实验结果表明,该方法能够明显地提高系统的控制性能,减小系统的轮廓误差,进而改进双轴直驱平台伺服系统的高精度轮廓加工性能.  相似文献   

10.
崔红  郭庆鼎 《电气传动》2005,35(6):44-47
针对中凸变椭圆活塞直线伺服驱动系统,提出了变增益零相位误差跟踪-滑模控制这一新型控制策略,以提高系统的跟踪性能和抗扰性能.它结合了变增益零相位误差跟踪控制器的理想跟踪特性与滑模控制器的抗扰动能力的优点,并采用扰动观测器对负载扰动进行估计和补偿,从而保证了中凸变椭圆活塞直线伺服驱动系统的快速稳定性.仿真结果表明,采用这种控制策略可以十分有效地减小中凸变椭圆活塞直线伺服驱动系统的跟踪误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号