首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen sensor based on graphene nano-composite with Pd-Ag nanoparticles was fabricated by MEMS process. Structural and morphological properties of the sensing film were studied by an energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FESEM), respectively. The H2 sensing properties of as-formed sensor were investigated by measuring the resistance changes at different H2 concentrations. The maximum gas response was 16.2% at 1000 ppm of H2 gas. The gas sensitivity of the as-formed H2 sensor showed linear behavior with the hydrogen concentration. Experimental results showed that the coupling of graphene with Pd/Ag alloy enhanced significantly hydrogen sensing performance.  相似文献   

2.
W-doped graphene and its selective gas adsorption/sensing performance are studied through first-principles density functional theory (DFT) calculations. A single W atom is stably anchored into the graphene plane with a high binding energy of ?9.325 eV. The W-doped graphene interacts more strongly with H2 compared to NH3, CH4, CO, SO2 or H2S. The H2 adsorption system also has a higher adsorption energy of ?1.035 eV. Furthermore, the W-doped graphene exhibits the highest sensor response to H2 with the largest number of transferred charges and the biggest change in the band gap. A negative electric field improves the interaction between the H2 and the W-doped graphene by increasing the adsorption energy and promoting charge transfer. However, the adsorption of the H2 is significantly weakened upon the application of a positive electric field; the adsorbed H2 is easily desorbed from the W-doped graphene with a modulated recovery time as short as ~4.099 s at room temperature (300 K) upon a +0.4 V Å?1 increase in the electric field. These results reveal that the W-doped graphene has promising selective and tunable H2 adsorption/sensing performance upon the application of external electric fields.  相似文献   

3.
In the present work, role of palladium (Pd) and tin oxide (SnO2) nanoparticles (NPs) deposited on graphene has been investigated in terms of dual gas sensing characteristics of ethanol and H2 between two temperatures. The incorporation of nanoparticles into graphene has been observed which results a large change in the sensing response towards these gases. It is investigated that, incorporation of isolated Pd NPs on the graphene facilitates the room temperature sensing of H2 gas with fast response and recovery time whereas, isolated SnO2 NPs on graphene enables the detection of ethanol at 200 °C. However, combination of isolated Pd and SnO2 NPs on graphene shows improved sensitivity and good selectivity towards H2 and ethanol, usually not observed in chemiresistive gas sensors. Catalytic PdH interaction and corresponding change in work function of nanoparticles on hydrogenation resulting in modifications in electronic exchange between Pd, SnO2 and graphene are responsible for the observed behavior. These results are important for developing a new class of chemiresistive type gas sensor based on change in the electronic properties of the graphene and NPs interfaces.  相似文献   

4.
Fast detection of H2 gas at room temperature has constantly remained a challenge. The metal-oxide based gas sensors have shown excellent sensing properties for gases like H2, NO, CO and NH3. In the present work, the H2 gas sensing characteristics of multiwalled carbon nanotubes based hybrid sensor (F-MWCNTs/TiO2/Pt) has been reported. The fabricated sensor shows 3.9% sensitivity for low concentration i.e. 0.05% of H2 with good repeatability and stability at room temperature. The sensing response of F-MWCNTs/TiO2/Pt is interrelated to change in their resistance on the introduction of H2 gas and this phenomenon is required for deep understanding the effect of H2 adsorption on their electronic conduction. The improvement in sensitivity of F-MWCNTs/TiO2/Pt as compared to MWCNTs/TiO2 towards H2 is because of the catalytic role of dispersed Pt nanoparticles deposited by sputtering.  相似文献   

5.
A new type of graphene-based nanohybrid was prepared from graphene nanosheets and 4-(diphenylamino)benzaldehyde (TPA-CHO) through 1,3-dipolar cycloaddition. The nanohybrid was modified by platinum nanoparticles via photodeposition. The nanohybrid and its Pt modified nanocomposite were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ultraviolet–visible absorption (UV–vis), Fourier transform infrared (FTIR), and Raman spectra confirmed that triphenylamine moiety grafted on the graphene surface. The results of fluorescence quenching and photocurrent enhancement of the triphenylamine-functionalized graphene revealed that photoinduced electron transfer from triphenylamine moiety to the graphene sheet. The investigation of using the Pt modified graphene-based nanocomposite as a photocatalyst for H2 evolution showed that under UV–vis light irradiation, the average H2 evolution rate and the quantum efficiency is 2.3 μmol h−1 and 0.45% mol E−1, respectively. This work demonstrated a potential application of an organic sensitizer covalently functionalized graphene as a novel photocatalyst in the field of solar energy conversion.  相似文献   

6.
A novel method for fabrication of a thermochemical hydrogen (TCH) gas sensor composed of platinum (Pt)-decorated graphene sheets and a thermoelectric (TE) polymer nanocomposite was investigated. The hydrogen sensing characterization for the device included gas response, response time (T90), recovery time (D10), and reliability testing, which were systematically conducted at room temperature with a relative humidity of 55%. Here, the Pt-decorated graphene sheets act as both an effective hydrogen oxidation surface and a heat-transfer TE polymer nanocomposite having low thermal conductivity. This property plays an important role in generating output voltage signal with a temperature difference between the top and bottom surfaces of the nanocomposite. As a result, our TCH gas sensor can detect the range of hydrogen from 100 ppm to percentage level with good linearity. The best response and recovery time revealed for the optimized TCH gas sensor were 23 s and 17 s under 1000 ppm H2/air, respectively. This type of sensor can provide an important component for fabricating thermoelectric-based gas sensors with favorable gas sensing performance.  相似文献   

7.
By using first-principles density functional theory, a theoretical investigation of Li-doped fluorinated graphene and its application as a hydrogen storage media is performed. It is found that a mixture between sp3 and a higher degree of sp2 of the carbon orbitals after doping with Li would restore the distorted fluorinated graphene, and a fluorinated graphene layer with Li adsorbed on single or double-sides could store hydrogen up to 9 or 16.2 wt%. Regarding the H2 adsorption mechanism, it has been demonstrated that the enhanced electrostatic field around the Li atom originates from the increased charge transfer from Li to graphene and F atoms with more electronegativity. Hybridization interaction between Li and graphene is also responsible for the adsorption of H2 molecules.  相似文献   

8.
A combined density functional theory and molecular dynamics approach is employed to study modifications of graphene at atomistic level for better H2 storage. The study reveals H2 desorption from hydrogenated defective graphene structure, V222, to be exothermic. H2 adsorption and desorption processes are found to be more reversible for V222 as compared to pristine graphene. Our study shows that V222 undergoes brittle fracture under tensile loading similar to the case of pristine graphene. The tensile strength of V222 shows slight reduction with respect to their pristine counterpart, which is attributed to the transition of sp2 to sp3-like hybridization. The study also shows that the V222 structure is mechanically more stable than the defective graphene structure without chemically adsorbed hydrogen atoms. The current fundamental study, thus, reveals the efficient recovery mechanism of adsorbed hydrogen from V222 and paves the way for the engineering of structural defects in graphene for H2 storage.  相似文献   

9.
This paper reports on a new strategy using a combination of graphene protective layer and amorphous molybdenum sulfide (MoSx) H2-evolving catalyst layer to form a hybrid coating layer that enhances both photocatalytic activity and stability of the p-Cu2O photocathode for the solar H2 generation in water. Graphene sheet was transferred from a copper substrate onto the p-Cu2O electrode surface by a simple solution process, resulting in the creation of p-Cu2O/Gr. A layer of MoSx was deposited further to generate a hybrid p-Cu2O/Gr/MoSx photocathode. In a pH 7 phosphate buffer electrolyte and under 1 Sun light illumination, at the applied potential of 0 V vs. reversible hydrogen electrode (RHE), the resultant p-Cu2O/Gr and p-Cu2O/Gr/MoSx show 7-fold superior catalytic activity and significant enhancement of the stability compared to a pristine p-Cu2O photocathode. The obtained results demonstrate that the p-Cu2O/Gr and p-Cu2O/Gr/MoSx photocathodes are very promising for photoelectrochemical cell water splitting.  相似文献   

10.
Hydrogen sensors able to perform measurements in real time in anaerobic environment such as natural gas (NG) will greatly help the development of power to gas technology. For now, thermal conductivity (TC) gas sensors and Pd thin film based sensors have demonstrated their capability to measure H2 in air and N2 but there is still lack of testing in natural gas environment. In this study, the sensing performances (response, hysteresis, response time and selectivity) of two sensors were assessed in three anaerobic environments: N2, CH4, and NG. The first one is a homemade resistive sensor based on a PdAu thin film and the second one is a commercial thermal conductivity sensor. While most performances are equivalent for both technologies, only the PdAu sensor is able to detect selectively H2, without any interfering effect with NG components. Thus, Pd based thin film sensors are promising for H2 detection in anaerobic environments.  相似文献   

11.
This paper reviews both static and dynamic characteristics of a planar-type Pd–GaN metal–semiconductor–metal (MSM) hydrogen sensor. The sensing mechanism of a metal–semiconductor (MS) hydrogen sensor was firstly reviewed to realize the sensing mechanism of the proposed sensor. Symmetrically bi-directional current–voltage characteristics associated with our sensor were indicative of easily integrating with other electrical/optical devices. In addition to the sensing current, the sensing voltage was also used as detecting signals in this work. With regard to sensing currents (sensing voltages), the proposed sensor was biased at a constant voltage (current) in a wide range of hydrogen concentration from 2.13 to 10,100 ppm H2/N2. Experimental results reveal that the proposed sensor exhibits effective barrier height variations (sensing responses) of 134 (173) and 20 mV (1) at 10,100 and 2.13 ppm H2/N2, respectively. A sensing voltage variation as large as 18 V was obtained at 10,100 ppm H2/N2, which is the highest value ever reported. If an accepted sensing voltage variation is larger than 3 (5) V, the detecting limit is 49.1 (98.9) ppm. Moreover, voltage transient response and current transient response to various hydrogen-containing gases were experimentally studied. The new finding is that the former response time is shorter than the latter one. Other dynamic measurements by switching voltage polarity and/or continuously changing hydrogen concentration were addressed, showing the proposed sensor is a good candidate for commonly used MS sensors.  相似文献   

12.
A planar-type metal-semiconductor-metal (MSM) hydrogen sensor forming on the collector layer was employed as an extended base (EB) of the InGaP-GaAs heterojunction bipolar transistors (HBTs). Then, hydrogen sensing transistors integrated were proposed and studied. After introducing sensing properties of the EB-hydrogen sensor, various sensing current gains defined were addressed for our hydrogen sensing transistor. Instead of the base current, N2 and/or hydrogen-containing gases were used as a parameter while measuring common-emitter characteristics of the hydrogen sensing transistor at various temperatures. Experimental results show that maximum sensing base current gains in 1% H2/N2 is 330 at 25 °C while it is enhanced to 1800 at 50 °C, then to 2300 at 80 °C, and finally to 2800 at 110 °C. In contrast, a peak sensing collector current gain is as high as 1.2 × 105 (4.3 × 104) in 1% (0.01%) at 110 °C. In addition, response times obtained from the sensing diode (base) and collector currents in 0.01% H2/N2 are 485 (490) and 745 s at 25 °C. Together with important features including one power supply and low-power consumption, the proposed hydrogen sensing transistor is very promising for applications in detecting hydrogen.  相似文献   

13.
In the present work, the effect of carbon shell around size selected palladium (Pd) nanoparticles on hydrogen (H2) sensing has been studied by investigating the sensing response of Pd-C core-shell nanoparticles having a fixed core size and different shell thickness. The H2 sensing response of sensors based on Pd and Pd-C nanoparticles deposited on SiO2 and graphene substrate has been measured over a temperature range of 25 °C–150 °C. It is observed that Pd-C nanoparticle sensor shows higher sensitivity with increase in shell thickness and faster response/recovery in comparison to that of Pd nanoparticle samples. Pd-C nanoparticles show room temperature H2 sensitivity in contrast to Pd nanoparticles which respond only at higher temperatures. Role of carbon shell is also understood by investigating H2 sensing properties of Pd and Pd-C nanoparticles on graphene substrates. These results show that higher catalytic activity and electronic interaction at Pd-C interface, a complete coverage and protection of Pd surface by carbon and presence of structural defects in nanoparticle core are important for room temperature and higher sensing response.  相似文献   

14.
A highly sensitive H2 gas sensor was fabricated using a Micro Electromechanical Systems (MEMS) procedure having an embedded micro-heater. The palladium-silver (Pd/Ag having stoichiometric ratios 77:23) thin film was deposited by the RF/DC magnetron sputtering and used as the hydrogen sensing layer designed as a zig-zag pattern. Morphological and structural properties of the Pd/Ag thin film was studied by Field emission scanning electron microscope (FESEM), Atomic force microscopy (AFM) and Energy Dispersive Analysis of X-rays respectively. The working temperature of the micro heater showed a linear relation with variations of the heater voltage. The electro thermal properties of the H2 sensor were studied by finite element method (FEM). The sensing properties of the fabricated H2 sensor as the change of electrical resistance were studied with respect to hydrogen concentration and temperature. Experimental results showed high sensor response and response time after application of the heater voltage. The sensing properties of the alloyed Pd/Ag thin film were more improved than those of pure palladium. The maximum sensor response (Rs) of the fabricated H2 sensor was 14.26% for 1000 ppm H2. The sensor response of the fabricated H2 sensor showed linear behavior with the heater voltage (operating temperature) and positively corresponded with the hydrogen concentration.  相似文献   

15.
High-quality p-type semiconducting Co3O4 with mixed morphology of nanoparticles/nanorods are synthesized using a hydrothermal route for high response and selective hydrogen sulphide (H2S) sensor application. XRD and Raman studies revealed the crystal structure and molecular bonding for obtained Co3O4, respectively. The nanoparticles/nanorods-like structures were confirmed for Co3O4 using FESEM and TEM analysis. The EDS and XPS spectra analysis were carried out for elemental composition and chemical atomic states of Co3O4. The Co3O4 sensor is investigated for gas sensing properties in dynamic conditions. The sensor exhibited the highest selectivity towards H2S among various hydrogen-contained gases at 225 °C. The sensor revealed a high response of 357% and 44% for 100 and 10 ppm H2S gas concentrations, respectively. The Co3O4 sensor exhibited a systematic dynamic resistance response for 100–10 ppm range H2S gas. The excellent dynamic resistance repeatability of the sensor was shown towards 25 ppm H2S gas. The response of Co3O4 sensor was investigated at different operating temperatures and H2S concentrations. The sensor stability and H2S sensing mechanism for the Co3O4 sensor have been reported. Highly uniform and mixed nanostructures of Co3O4 can be the potential sensor material for real-time high-performance H2S sensor application.  相似文献   

16.
The effects of Nafion® film thickness and charges passed for the preparation of Pt and nano-structured polyaniline (nsPANi) on the sensing properties of a planar solid-state amperometric hydrogen gas sensor are investigated. The surface morphology, Pt loading and electroactive surface area (ESA) are analyzed by FESEM, inductively coupled plasma (ICP) and cyclic voltammetry (CV), respectively. The specific sensitivity of the hydrogen gas sensor can be effectively promoted by decreasing the thickness of the Nafion® film and the charge passed for the electrodeposition of Pt and PANi (from 30 to 10 mC), respectively. The very low Pt loading of the sensing composite electrode is due to the use of the nanofibrous PANi as support, which remarkably promotes Pt utilization. The specific sensitivity and the response time of the hydrogen gas sensor based on the Nafion® (5.7 μm)/Pt/nsPANi/Au/Al2O3 electrode with a Pt loading of 1.87 μg are found to be 338.50 μA ppm?1 g?1 and 100–250 s, respectively, for measuring 10–10,000 ppm H2.  相似文献   

17.
Solvothermal and chemical reduction of graphene oxide with N2H4 or HI affect the surface composition, rupture and delamination degree of reduced graphene oxide (rGO). Higher reduction and stacking of rGO was achieved by chemical reduction with HI, while solvothermal reduction and, especially, the chemical reduction with N2H4 lead to higher delamination of rGO. The incorporation of the different rGO to CdS implies changes in the characteristics and photoactivity of the CdS-rGO hybrids. A promoter effect was observed in all CdS-rGO hybrids respect to the photoactivity of bare CdS, observing the better photoactivity on the hybrid in which the graphene oxide was reduced with HI (CdS-rGO/HI). The variations in the photoactivity of CdS-rGO hybrids are analyzed in terms of changes in the structure, surface and light absorption ability of CdS and also analyzing the contact of CdS with rGO. The greater concentration of small CdS nanostructures with strong quantum confinement is in the origin of the enhancement in photoactivity observed in the CdS-rGO/HI hybrid.  相似文献   

18.
Metal oxide semiconductor gas sensors of hydrogen with a typical capacitor-like Pt/TiO2/Pt electrode arrangement exhibit excellent sensitivity to hydrogen even at room temperature. At the same time, very similar Pt/TiO2/Pt cells can also be used as memristive elements exhibiting resistive switching between two resistive states, which has been recently exploited to create a gas sensor with built-in memory. Merging of these two functionalities within a single device also opens new possibilities for smart gas sensor arrays. However, so far such sensors have been prepared only on rigid substrates. In this work, a flexible hydrogen gas sensor with such capacitor-like Pt/TiO2/Pt electrode arrangement fabricated on polyimide foil is presented and characterized in terms of hydrogen gas sensing properties and bending endurance. The sensor exhibits high response (Rair/RH2) of more than 105 to 10 000 ppm H2 at 150 °C with minor decline at elevated humidity and is capable of room temperature operation. The lowest detected concentration was 3 ppm at 150 °C and 300 ppm at room temperature in dry conditions. Bending the sensor 105 times over diameter of 10 mm led to slight improvement of the sensing performance.  相似文献   

19.
It is still a challenging task to achieve the rapid detection of hydrogen (H2) with the rapid development of hydrogen energy sector. In this work, the H2 sensing capabilities of pristine and Pd-modified SnO2 nanoparticles with the size of ~7 nm were systematically evaluated. The SnO2 nanoparticles were synthesized via hydrothermal method and Pd modification was performed using impregnation route. Pd modification remarkably upgraded the H2 sensing performances compared with the pristine SnO2 gas sensor. The working temperature of SnO2 decreased from 300 °C to 125 °C after Pd loading. Among the prepared Pd/SnO2 gas sensors, 0.50 at.% Pd/SnO2 sensor exhibited the highest response magnitude of 254 toward 500 ppm H2 and rapid response/recovery time of 1/22 s at 125 °C. The enhanced H2 sensing capabilities by Pd modification may be related to the catalytic effect and the resistance modulation.  相似文献   

20.
Hydrogen gas (H2) detection plays an important role in many fields. With the continuous demand and development of clean energy, it is urgent to study new hydrogen gas sensors for stable and accurate H2 detection. The purpose of this research is to develop a new H2 sensor based on the resonant photoacoustic (PA) cell as the sensing element. The sensitivity of the resonant PA cell to the resonant frequency is sufficiently utilized. The optimization of its resonance frequency was investigated minutely for the H2 sensor. Detection utilizes resonance frequency differences between H2 and air as a sensing mechanism. The resonance frequency tracking is adopted and implemented by the field-programmable gate array (FPGA) device. The minimum detection limit of about 74 ppm for H2 has been demonstrated by preliminary experiments. The response time of the sensor is about 5 s. This sensor detects concentrations ranging from 74 ppm to 100% in 1 atm. The preliminary test result shows that the H2 sensor based on this structure has a larger application perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号