首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal oxide semiconductor gas sensors of hydrogen with a typical capacitor-like Pt/TiO2/Pt electrode arrangement exhibit excellent sensitivity to hydrogen even at room temperature. At the same time, very similar Pt/TiO2/Pt cells can also be used as memristive elements exhibiting resistive switching between two resistive states, which has been recently exploited to create a gas sensor with built-in memory. Merging of these two functionalities within a single device also opens new possibilities for smart gas sensor arrays. However, so far such sensors have been prepared only on rigid substrates. In this work, a flexible hydrogen gas sensor with such capacitor-like Pt/TiO2/Pt electrode arrangement fabricated on polyimide foil is presented and characterized in terms of hydrogen gas sensing properties and bending endurance. The sensor exhibits high response (Rair/RH2) of more than 105 to 10 000 ppm H2 at 150 °C with minor decline at elevated humidity and is capable of room temperature operation. The lowest detected concentration was 3 ppm at 150 °C and 300 ppm at room temperature in dry conditions. Bending the sensor 105 times over diameter of 10 mm led to slight improvement of the sensing performance.  相似文献   

2.
The Polyaniline (PANI) and Titanium dioxide (TiO2)/PANI composite thin film based chemiresistor type gas sensors for hydrogen (H2) gas sensing application are presented in this paper. Pure PANI and TiO2/PANI composites with different wt% of TiO2 were synthesized by chemical oxidative polymerization of aniline using ammonium persulfate in acidic medium at 0-5 °C. Thin films of PANI and TiO2/PANI composites were deposited on copper (Cu) interdigited electrodes (IDE) by spin coating method to prepare the chemiresistor sensor. Finally, the response of these chemiresistor sensors for H2 gas was evaluated by monitoring the change in electrical resistance at room temperature. It was observed that the TiO2/PANI composite thin film based chemiresistor sensors show a higher response as compared to pure PANI sensor. The structural and optical properties of these composite films have been characterized by X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopy respectively. Morphological and structural properties of these composites have also been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively.  相似文献   

3.
In this study, porous polyaniline tube-like/TiO2 nano-heterostructure (PPTH) was prepared by a chemical oxidative polymerization to be used in H2 sensing. The surface morphology of polyaniline, the content of one-dimensional TiO2 nanostructures (1D TiO2), and the porosity of PPTH significantly affected the sensing performance of the samples. The response and response/recovery time of gas sensing for H2 were considered by morphological change of TiO2 at ambient conditions. The p-n contacts between polyaniline matrix and 1D TiO2 provided more active sites and facilitated the electrons transport, hence promoting the physisorption of gas molecules. R20 exhibited the highest sensitivity of 9.05 towards 2500 ppm of H2 gas at the respective response and recovery times of 94 and 374 s. The sensor designed based on F30 exhibited proper long-term stability after one year. The sensing mechanism of PPTH was also studied in detail.  相似文献   

4.
We present platinum nanoparticles dispersed wrinkled graphene-like carbon-wrapped carbon nanotubes (Pt/GCNTs) as a room temperature chemiresistive hydrogen gas sensor. Pt nanoparticles are decorated over GCNTs surface using poly (sodium 4-styrene sulfonate) (PSS) functionalization, followed by ethylene glycol reduction method. The highly defective wrinkled graphene-like surface of GCNTs provides large surface area and PSS functionalization provides stable immobilization of mono dispersed Pt nanoparticles on the carbon surface. A simple and inexpensive drop cast technique is used to fabricate the thick film sensor of the material. Hydrogen resistive gas sensing properties of Pt/GCNTs are studied at different gas concentrations, temperatures and Pt wt. % loadings. Pt/GCNTs sensor shows optimal sensitivity at room temperature with stable and reproducible response towards hydrogen. The sensor with 2 wt. % of Pt showed maximum sensitivity that is three fold higher than Pt decorated carbon nanotubes (Pt/CNTs) with the same Pt wt. % loading. The present study shows potential to explore novel H2 sensors.  相似文献   

5.
Highly-ordered, vertically oriented TiO2 nanotubes are synthesized, and their hydrogen sensing properties are investigated. Self-organized TiO2 nanotube arrays are grown by anodic oxidation of a titanium foil in an aqueous solution that contains 1 wt% hydrofluoric acid at 20 °C. We use a potential ramp at a rate of 100 mV s−1, increasing from the initial open-circuit potential (OCP) to 20 V, and this final potential of 20 V is then held constant during the anodization process. The fabricated TiO2 nanotubes are approximately 1 μm in length and 90 nm in diameter. For the sensor measurements, two platinum pads are used as electrodes on the TiO2 nanotube arrays. The hydrogen sensing characteristics of the sensor are analyzed by measuring the sensor responses ((I − I0)/I0) in the temperature interval of 20–150 °C. We find that the sensitivity of the sensor is approximately 20 for 1000 ppm H2 exposure at room temperature, and increases with increasing temperature. The sensing mechanism of the TiO2 nanotube sensor could be explained with chemisorption of H2 on the highly active nanotube surface.  相似文献   

6.
The effects of Nafion® film thickness and charges passed for the preparation of Pt and nano-structured polyaniline (nsPANi) on the sensing properties of a planar solid-state amperometric hydrogen gas sensor are investigated. The surface morphology, Pt loading and electroactive surface area (ESA) are analyzed by FESEM, inductively coupled plasma (ICP) and cyclic voltammetry (CV), respectively. The specific sensitivity of the hydrogen gas sensor can be effectively promoted by decreasing the thickness of the Nafion® film and the charge passed for the electrodeposition of Pt and PANi (from 30 to 10 mC), respectively. The very low Pt loading of the sensing composite electrode is due to the use of the nanofibrous PANi as support, which remarkably promotes Pt utilization. The specific sensitivity and the response time of the hydrogen gas sensor based on the Nafion® (5.7 μm)/Pt/nsPANi/Au/Al2O3 electrode with a Pt loading of 1.87 μg are found to be 338.50 μA ppm?1 g?1 and 100–250 s, respectively, for measuring 10–10,000 ppm H2.  相似文献   

7.
Hydrogen sensors have been fabricated from highly ordered TiO2 nanotube arrays through anodization of a Ti substrate in an ethylene glycol solution containing NH4F. The vertically oriented TiO2 nanotube arrays containing Pt electrodes exhibit an ability to detect a wide-range of hydrogen concentrations at room temperature. On exposure to 2000 ppm (parts per million) hydrogen, the sensors exhibit seven orders of magnitude change in resistance with a response time of 13 s at room temperature. The TiO2 nanotube arrays sensor equipped with Pt electrodes exhibited a diode-type current–voltage (I–V) characteristic in air, but nearly ohmic behavior in hydrogen balanced with argon. A significant response to hydrogen was observed without the presence of oxygen in the base atmosphere. The response of two kinds of sensors with either Pt or Pt/Ti electrodes to 500 ppm hydrogen was measured and the results suggested that the excellent hydrogen sensing properties in air resulted primarily from the variation of the Schottky barrier height at the Pt/TiO2 interface.  相似文献   

8.
Reduced graphene oxide (RGO) was used to improve the hydrogen sensing properties of Pd and Pt-decorated TiO2 nanoparticles by facile production routes. The TiO2 nanoparticles were synthesized by sol–gel method and coupled on GO sheets via a photoreduction process. The Pd or Pt nanoparticles were decorated on the TiO2/RGO hybrid structures by chemical reduction. X-ray photoelectron spectroscopy demonstrated that GO reduction is done by the TiO2 nanoparticles and Ti–C bonds are formed between the TiO2 and the RGO sheets as well. Gas sensing was studied with different concentrations of hydrogen ranging from 100 to 10,000 ppm at various temperatures. High sensitivity (92%) and fast response time (less than 20 s) at 500 ppm of hydrogen were observed for the sample with low concentration of Pd (2 wt.%) decorated on the TiO2/RGO sample at a relatively low temperature (180 °C). The RGO sheets, by playing scaffold role in these hybrid structures, provide new pathways for gas diffusion and preferential channels for electrical current. Based on the proposed mechanisms, Pd/TiO2/RGO sample indicated better sensing performance compared to the Pt/TiO2/RGO. Greater rate of spill-over effect and dissociation of hydrogen molecules on Pd are considered as possible causes of the enhanced sensitivity in Pd/TiO2/RGO.  相似文献   

9.
In this study, it has been investigated the use of Pt doped carbon nanotube for the hydrogen gas sensor at room temperature and compared with available experimental literature data. The WB97XD method with 6-31G(d,p) and LanL2DZ basis sets have been utilized. The charge distributions obtained for the structures show that charge transfer is occurred from the adsorbed hydrogen molecule to the Pt atom of carbon nanotube structure as an electron acceptor. The HOMO–LUMO gap of the Pt doped SWCNT decreased with the adsorption of hydrogen molecule. As a conclusion, the electrical conductivity of Pt doped (8,0) SWCNT cluster increased after a hydrogen molecule adsorption. Accordingly, Pt doped (8,0) SWCNT has potential for sensing of hydrogen gas. Theoretical (DFT) results are in well agreement with available experimental literature data that was reported a chip sensor loaded Pt-CNT gave highest response coefficient for H2 gas sensing.  相似文献   

10.
In this work, we investigated the properties of resistivity type hydrogen (H2) sensor for monitoring in H2 gas. The H2 sensor was made of Pd nanocube (NCs) and TiO2 nanofiber (NFs) composites. The Pd NCs was synthesized by seed-mediated growth and TiO2 nanofiber was synthesized via electrospinning method. The two nanomaterials are then converted into nanocomposites by ultrasonication process. Pd NCs-TiO2 NFs composite was characterized by scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). The H2 sensing properties including the response/recovery time, the response value and linearity of the synthesized samples were investigated toward to various H2 concentrations (0.6, 0.8 and 1%). The response of H2 sensor is S = 40.8% and the response/recovery time are 25/1 s with 0.6% at working temperature of 150 °C. Moreover, the H2 sensor has excellent cross-selectivity for H2 compared to ethanol, nitrogen dioxide and isopropyl alcohol.  相似文献   

11.
A novel method for fabrication of a thermochemical hydrogen (TCH) gas sensor composed of platinum (Pt)-decorated graphene sheets and a thermoelectric (TE) polymer nanocomposite was investigated. The hydrogen sensing characterization for the device included gas response, response time (T90), recovery time (D10), and reliability testing, which were systematically conducted at room temperature with a relative humidity of 55%. Here, the Pt-decorated graphene sheets act as both an effective hydrogen oxidation surface and a heat-transfer TE polymer nanocomposite having low thermal conductivity. This property plays an important role in generating output voltage signal with a temperature difference between the top and bottom surfaces of the nanocomposite. As a result, our TCH gas sensor can detect the range of hydrogen from 100 ppm to percentage level with good linearity. The best response and recovery time revealed for the optimized TCH gas sensor were 23 s and 17 s under 1000 ppm H2/air, respectively. This type of sensor can provide an important component for fabricating thermoelectric-based gas sensors with favorable gas sensing performance.  相似文献   

12.
Hydrogen sensor based on graphene nano-composite with Pd-Ag nanoparticles was fabricated by MEMS process. Structural and morphological properties of the sensing film were studied by an energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FESEM), respectively. The H2 sensing properties of as-formed sensor were investigated by measuring the resistance changes at different H2 concentrations. The maximum gas response was 16.2% at 1000 ppm of H2 gas. The gas sensitivity of the as-formed H2 sensor showed linear behavior with the hydrogen concentration. Experimental results showed that the coupling of graphene with Pd/Ag alloy enhanced significantly hydrogen sensing performance.  相似文献   

13.
In this study, we report the hydrogen sensing properties of the Pt dispersed graphitic carbon nitride (g-C3N4) nanocomposite at room temperature and inert atmosphere. The nanocomposite was synthesized by a wet-chemical approach, where melamine and chloroplatinic acid hexahydrate were used as precursors. The fabrication of the sensor was done by jet nebulizer-based spray pyrolysis setup. Various characterizations were performed for the analysis of the synthesized nanocomposite. Electrical resistance in the presence and absence of the analyte gas was drastically different. The results at different concentrations and film thickness show Pt/g-C3N4 to possess good sensitivity towards the hydrogen gas, suggesting that it could be used for reliable hydrogen gas sensing.  相似文献   

14.
Large-scale synthesis of GaN nanowires was grown on c-sapphire substrate by chemical vapor deposition technique. X-ray diffraction, field emission scanning electron microscopy, μ-Raman and μ-photoluminescence analyses reveal that GaN nanowires crystallize within a hexagonal wurtzite-type structure with a considerably high yield, high aspect ratio of GaN NWs having an average diameter and length of 80 nm and up to several microns, respectively. A metal–semiconductor–metal (MSM) gas sensor using GaN nanowires was fabricated and hydrogen (H2)-sensing performances were examined over broad range of concentrations (7–1000 ppm) and at various operating temperatures (25,100, 150 °C). The NWs demonstrated high sensitivity up to 255% upon exposure to 1000 ppm of H2 gas at room temperature at a low power consumption of 60 μW. Additionally, at room temperature, the sensor exhibited a significant sensitivity of 83% when exposed to a very low H2 gas concentration of 34 ppm then becomes 15% at ultra low level of 7 ppm. The sensing measurements of NWs based sensor for H2 gas in the temperatures range of 25–150 °C were repeatable and reversible over a period of time of 50 min. The sensor exhibited free hysteresis phenomena after exposed to various H2 concentrations at various temperatures. The high performance of the fabricated sensor was attributed mainly to the large surface-to-volume ratio as well as the high crystallinity of the synthesized GaN NWs.  相似文献   

15.
In the present work, the effect of carbon shell around size selected palladium (Pd) nanoparticles on hydrogen (H2) sensing has been studied by investigating the sensing response of Pd-C core-shell nanoparticles having a fixed core size and different shell thickness. The H2 sensing response of sensors based on Pd and Pd-C nanoparticles deposited on SiO2 and graphene substrate has been measured over a temperature range of 25 °C–150 °C. It is observed that Pd-C nanoparticle sensor shows higher sensitivity with increase in shell thickness and faster response/recovery in comparison to that of Pd nanoparticle samples. Pd-C nanoparticles show room temperature H2 sensitivity in contrast to Pd nanoparticles which respond only at higher temperatures. Role of carbon shell is also understood by investigating H2 sensing properties of Pd and Pd-C nanoparticles on graphene substrates. These results show that higher catalytic activity and electronic interaction at Pd-C interface, a complete coverage and protection of Pd surface by carbon and presence of structural defects in nanoparticle core are important for room temperature and higher sensing response.  相似文献   

16.
The monitoring and classification of different gases, such as H2 and NH3 using a low-cost resistive semiconductor sensor is preferred in practical applications in hydrogen energy, breath analysis, air pollution monitoring, industrial control, and etc. Herein, porous bi-layer Pt/SnO2 thin film sensors were fabricated to enhance H2 and NH3 sensing performance for effective monitoring and classification. Different Pt film thicknesses of 2, 5, 10, and 20 nm were deposited on 150 nm SnO2 film-based sensors by sputtering method to optimize the response to H2 and NH3 gases. Gas sensing results showed that the fabricated Pt/SnO2 films significantly improved the sensor response to NH3 and H2 compared to pure SnO2 thin film. The sensors based on 5 and 10 nm Pt catalyst layers presented the highest responses to H2 and NH3, respectively. The optimal working temperature for NH3 was in the range from 250 °C to 350 °C, and that for H2 gas is less than 200 °C. The response of Pt/SnO2 sensors to CH4, CO, H2S, and liquefied petroleum gas was much lower than that to NH3 and H2 supporting the high selectivity. On the basis of sensing results at different working temperatures or Pt thicknesses, we applied a radar plot and linear discriminant analysis methods to distinguish NH3 and H2. The results showed that H2 and NH3 could be classified without any confusion with different Pt layer thicknesses at a working temperature of 250 °C.  相似文献   

17.
In order to improve the hydrogen sensing of transition metal oxide nanomaterials at room temperature, MoO3 nanowire paper was prepared and used as a hydrogen sensing materials on substrate. In this paper, orthorhombic phase, ultra-long (~1 mm) MoO3 nanowires were synthesized through conventional hydrothermal method at 260 °C for 96 h. A flexible nanowires paper with size of 200 mm × 300 mm was obtained by further self-assembly formation process of pure α-MoO3 nanowires in aqueous solution on hydrophobic substrate, and the thickness of paper can be controlled depend on the concentration of disperse nanowires. A novel hydrogen sensor with sensing area of 10 mm × 10 mm was obtained after Pt interdigital electrodes (IDE) deposited on the surface of α-MoO3 nanowires paper and transferred into ceramic circuit board (CCB) without any surface modification. The response and recovery time are about 3.0 and 2.7 s toward 1.5% H2, respectively. The sensors also show good selectivity toward H2 against other reduce gas, such as C2H5OH, CO and CH4. Large amounts of the porous structures and high specific surface of nanowires paper is beneficial to the absorption of oxygen molecules, which would lead to the high sensitivity, fast response and recovery speed of sensor at room temperature. MoO3 nanowires paper sensors have excellent stability and reliability, which could work for 5.56 years at room temperature.  相似文献   

18.
In the present work, role of palladium (Pd) and tin oxide (SnO2) nanoparticles (NPs) deposited on graphene has been investigated in terms of dual gas sensing characteristics of ethanol and H2 between two temperatures. The incorporation of nanoparticles into graphene has been observed which results a large change in the sensing response towards these gases. It is investigated that, incorporation of isolated Pd NPs on the graphene facilitates the room temperature sensing of H2 gas with fast response and recovery time whereas, isolated SnO2 NPs on graphene enables the detection of ethanol at 200 °C. However, combination of isolated Pd and SnO2 NPs on graphene shows improved sensitivity and good selectivity towards H2 and ethanol, usually not observed in chemiresistive gas sensors. Catalytic PdH interaction and corresponding change in work function of nanoparticles on hydrogenation resulting in modifications in electronic exchange between Pd, SnO2 and graphene are responsible for the observed behavior. These results are important for developing a new class of chemiresistive type gas sensor based on change in the electronic properties of the graphene and NPs interfaces.  相似文献   

19.
The development and application of a hydrogen dual sensor (HDS) for the application in the fuel cell (FC) field, is reported. The dual sensing device is based on a ceramic platform head with a semiconducting metal oxide layer (MOx) printed on Pt interdigitated contacts on one side and a Pt serpentine resistance on the back side. MOx layer acts as a conductometric (resistive) gas sensor, allowing to detect low H2 concentrations in air with high sensitivity and fast response, making it suitable as a leak hydrogen sensor. The proposed Co-doped SnO2 layer shows high sensitivity to hydrogen (R0/R = 90, for 2000 ppm of H2) at 250 °C in air, and with fast response (<3 s). Pt resistance serves as a thermal conductivity sensor, and can used to monitor the whole range of hydrogen concentration (0–100%) in the fuel cell feed line with short response-recovery times, lower than 13 s and 14 s, respectively. The effect of the main functional parameters on the sensor response have been evaluated by bench tests. The results demonstrate that the dual sensor, in spite of its simplicity and cheapness, is promising for application in safety and efficiency control systems for FC power source.  相似文献   

20.
With the increasing usage of hydrogen energy, the requirements for hydrogen detection technology is increasingly crucial. In addition to bringing down the working temperature, further improvement in the response and broadening the detection range of hydrogen sensors in particular are still needed. TiO2 based sensors show great promise due to their stable physical and chemical properties as well as low cost and easy fabrication, but their detection range and low concentration response requires further improvement for practical applications. Here (002) oriented rutile TiO2 thin films are prepared by a hydrothermal method followed by annealing in either air, oxygen, vacuum or H2 and the hydrogen sensing performance are evaluated. Raman results show that TiO2 thin films annealed in vacuum and hydrogen have more oxygen vacancies, while those annealed in air and oxygen have a more stoichiometric surface. Annealing in an oxygen-rich atmosphere is shown to extend the detection range of the TiO2 sensors while annealing in anaerobic atmospheres increases their response. At high hydrogen concentrations surface adsorbed O2 is the dominant factor, while at low concentrations the Schottky barrier between Pt and TiO2 is key to achieving a high response. Here we show controlling the TiO2 surface properties is essential for optimizing hydrogen detection over specific concentration ranges. We demonstrate that adjusting the annealing conditions and ambient provides a simple method for tuning the performance of room temperature operating TiO2 based hydrogen sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号