首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 946 毫秒
1.
基于数理统计方法的TB6钛合金本构关系   总被引:1,自引:0,他引:1  
采用Thermecmaster-Z型热模拟试验机对TB6钛合金在800~1150℃、0.001~10 S<'-1>条件下进行等温恒应变速率压缩试验.通过分析TB6钛合金在不同热变形条件下的真应力-真应变曲线,并在综合考虑应变速率、变形温度和应变量对流动应力影响的基础上,建立了TB6钛合金的本构关系.误差分析表明,所建的本构关系具有较好的精度,能较好地反映TB6钛合金的热变形行为特征.  相似文献   

2.
通过热模拟压缩试验,对TB8钛合金β相变点附近的高温变形行为进行了研究.热模拟压缩试验的变形温度为650~900℃,应变速率为0.01~10 s-1.通过试验分别得到了TB8钛合金双相区(α+β)和单相区(β)的流变应力曲线,并分别研究了流变应力与变形温度、应变速率和微观组织演化的关系.在10 s-1的高应变速率下,真应力-真应变曲线在850和900℃出现了双峰,这一现象未见报道.通过本构关系推导,得到了TB8钛合金双相区(α+β)和单相区(β)的表观激活能分别为233.0151和197.8987 kJ/mol.另外,建立了TB8钛合金双相区(α+β)和单相区(β)相应的流变应力本构方程.  相似文献   

3.
TB6钛合金热变形行为及本构模型研究   总被引:1,自引:0,他引:1  
研究材料的热变形行为及建立其本构模型是进行材料加工与模拟的基础。通过对TB6钛合金热变形行为分析,表明流变应力受应变速率的影响较显著,而变形温度对流变应力的影响程度与应变速率的大小有关。采用Arrhenius型双曲正弦方程建立了TB6钛合金流变应力本构模型。研究变形条件对TB6钛合金流变应力的影响。结果表明,可通过控制应变速率和变形激活能来控制热加工的应力水平和力能参数,为TB6钛合金塑性加工过程控制和模拟提供前提条件。  相似文献   

4.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

5.
铸态TB6钛合金热变形行为及本构关系   总被引:1,自引:0,他引:1  
通过等温恒应变速率压缩实验研究铸态TB6钛合金在温度为800~1 100 ℃,应变速率为10-3~1 s-1条件下的热变形行为.结果表明:应变速率对铸态TB6合金流变应力的影响最显著,其次是变形温度,而应变的影响作用最小.在低温高应变速率下,流变应力曲线呈连续软化特征,而在高温低应变速率下,流变应力曲线呈稳态流变特征.铸态TB6合金的热变形激活能为200 kJ/mol,接近纯钛β相的自扩散激活能,表明在实验条件范围内主要发生动态回复过程.在Arrhenius方程基础上考虑了应变对流变应力曲线的影响,建立了能准确描述铸态TB6钛合金流变应力曲线的双曲正弦本构关系.  相似文献   

6.
利用Gleeble-3500热模拟试验机,在变形温度为800~1 000℃,应变速率为0.001~10s-1条件下对TB17钛合金进行等温恒应变速率压缩试验,获得不同参数下合金的流动应力数据。通过金相组织观察,研究了热变形过程中的合金组织的变化规律。建立了具有BP算法的人工神经网络,利用所建立的BP网络模型对TB17钛合金的流动应力进行预测,发现预测值与试验值符合较好,验证了该BP网络本构关系模型的准确性。  相似文献   

7.
在Gleeble 3500热模拟试验机上对锻态TB9钛合金在变形温度1 003~1 103 K、变形速率1~0.001 s-1进行了等温压缩变形处理。基于真应力-应变曲线建立了锻态TB9钛合金高温变形稳态流变方程。结果表明,TB9钛合金的峰值应力随变形温度的提高和应变速率的减小而降低,达到峰值应力后,在加工硬化和流变软化共同作用下进入稳态流变阶段;获得了锻态TB9钛合金高温变形的本构方程。  相似文献   

8.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

9.
使用Gleeble-3800热模拟试验机在850~1050℃、应变速率0.01~10 s~(-1)、变形程度为70%的条件下对铸态TB9钛合金进行热变形行为研究。通过Arrhenius双曲正弦方程和Z参数建立了TB9钛合金热变形的本构方程。结果表明:TB9钛合金流变应力随变形温度升高而降低,随应变速率升高而升高;在本试验条件下,TB9钛合金软化机制主要为动态再结晶,随温度降低动态再结晶现象变得明显;所建立的本构方程与试验值吻合较好,为TB9钛合金有限元模拟及制定锻造工艺提供了理论依据。  相似文献   

10.
TC11钛合金高温变形本构关系研究   总被引:4,自引:0,他引:4  
在Thermecmastor-Z型热加工模拟试验机上,对TC11钛合金在990℃~1080℃、0.001s-1~70s-1范围内进行了高温压缩实验。通过真应力-真应变曲线,分析了流动应力随变形热力参数的变化规律,并在Arrhenius方程的基础上考虑了真应变对流动应力的影响,构建出TC11钛合金的本构关系。误差分析表明,该本构方程有较好的精度,可适合于工程应用。  相似文献   

11.
Hot compression tests of metastable β titanium alloy TB8 were carled out using a Gleeble-1500 thermal simulation testing machine in the temperature range of 750-1 100 ℃, at constant strain rate from 0.01 s^-1 to l S^-1 and with height direction reduction of 60%. Flow stress behavior and microstructure evolution during hot compression of TB8 alloy were investigated. The hyperbolic-sine-type constitutive model of TB8 alloy was obtained to provide basic data for determining reasonable forming process. The results indicate that hot deformation behavior of TB8 alloy is highly sensitive to the temperature and strain rate. An analysis of the flow stress dependence on strain rate and temperature gives a stress exponent of n=3.416 19 and a deformation activation energy of Ω=227.074 4 kJ/mol. According to the deformation microstructure, no dynamic recrystallization happens below r-phase transus temperature and as a result dynamic recovery is the predominant softening mechanism. On the other hand, the main softening mechanism is characterized as dynamic recrystallization at a slow strain rate above r-phase transus temperature.  相似文献   

12.
基于新型亚稳β钛合金Ti2448在温度1023~1123K、应变速率63~0.001s-1下的等温热压缩流动应力曲线特征,构建能够完整描述该合金流动应力与应变、应变速率、变形温度之间关系的本构模型。在此过程中,通过基于统一黏塑形理论改进双曲正弦函数,构建合金在高应变速率(≥1s-1)下发生动态回复(DRV)的模型;通过对标准的Avrami方程进行简化,表征了Ti2448在低应变率(1s-1)下发生的动态再结晶(DRX)软化机制。最终通过应用全局优化求解非线性方程的新方法确定模型中的相关参数。根据所建模型得到的预测曲线和实验曲线吻合得较好,能够有效预测Ti2448在热变形过程中的流动应力,为构建亚稳β钛合金热变形本构模型提供一种有效的方法。  相似文献   

13.
利用Thermecmastor-Z型热加工模拟试验机对2D70铝合金进行等温恒应变速率压缩试验,获得了不同变形温度、不同应变速率和不同真应变下的流动应力数据.结合实验数据和神经网络知识,建立了具有BP算法的人工神经网络,训练结束后的神经网络即成为2D70铝合金的一个知识基的本构关系模型.误差分析表明,该神经网络本构关系模型具有较高的精度,可用于指导2D70铝合金热加工工艺的制定,并可用于2D70铝合金热变形过程的有限元模拟.  相似文献   

14.
TB10钛合金筒体反挤压成形的有限元模拟   总被引:1,自引:0,他引:1  
通过热模拟实验得到TB10钛合金的流动应力-应变曲线,应用DEFORM-3D软件建立材料模型.基于刚塑性有限元法,对TB10钛合金筒体反挤压过程进行数值模拟.分析了挤压过程的载荷-行程曲线,以及坯料内部的温度、速度、应力、应变等的分布,并对模拟过程中的误差来源做了分析.研究表明,在摩擦因子较小(m=0.1)的情况下,挤压载荷较为稳定,筒壁处金属流动速度均匀,但局部变形不均和应力集中可能在表面形成裂纹.  相似文献   

15.
为了确定Ti80钛合金热变形的最佳工艺窗口,采用Gleeble3500热模拟试验机对Ti80钛合金进行了高温压缩试验,试验变形温度为850~1050 ℃,应变速率为0.05~1 s-1。结果表明,Ti80钛合金对变形温度和应变速率极其敏感,流变应力随着应变速率的增加和变形温度的降低而显著升高,近β区的流变应力分布会发生突变。应用线性回归方法,建立Ti80钛合金的高温本构方程,计算出Ti80钛合金在两相区的变形激活能为308 kJ/mol,并基于Prasad失稳准则,建立Ti80钛合金的热加工图,最终确定在变形温度为880~930 ℃的两相区变形条件下,Ti80钛合金在高应变速率下可以充分发生动态再结晶,从而获得理想的组织性能。  相似文献   

16.
采用Gleeble 3500D热模拟试验机对TC17钛合金进行了高温压缩试验。其变形温度为973~1223 K,应变速率为0.001~10 s~(-1),应变0.9。结果表明:TC17钛合金高温流变应力对应变速率和变形温度非常敏感。在温度为1123,1183和1223 K,应变速率为10 s~(-1)时,TC17钛合金的流动应力出现了明显的应力不连续屈服现象。利用Zener-Holloman参数建立了TC17钛合金的高温本构方程,与试验结果对比表明:该方程可以准确地描述TC17钛合金的的高温流动行为。基于动态模型,建立了TC17钛合金的热加工图,并结合微观组织分析验证了加工图的准确性。  相似文献   

17.
通过使用Gleeble-3500热模拟试验机进行等温单轴压缩试验,研究了Ti-6Al-4V-0.1Ru钛合金在温度800到1100℃,应变速率0.01到10 s-1条件下的高温流变行为。结果表明,Ti-6Al-4V-0.1Ru钛合金的峰值应力随着变形温度的降低以及变形速率的增大而增大,软化机制在950℃以下为动态回复,在950℃以上为动态再结晶。通过使用线性回归的方法建立了Ti-6Al-4V-0.1Ru钛合金的Arrhenius本构模型,计算得到该合金的热激活能为720.477 kJ/mol,应变速率敏感指数为4.809。通过引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的流变应力预测模型,通过对试验值和预测值的比对,相关系数达到96.9%,说明该模型具有较好的预测精度。  相似文献   

18.
在THERMECMASTER-Z型热模拟试验机上,对锻态TB6钛合金在真应变为0.92、变形温度为800℃~1150℃、应变速率为0.001s-1~1s-1的条件下进行等温恒应变速率压缩试验,分析合金在β单相区条件下的热变形特点,并观察金相组织。结果表明,应变速率对合金流动应力的影响较显著;而变形温度对合金流动应力的影响在较高应变速率时较大,在较低应变速率时较小。动态再结晶晶粒尺寸和动态再结晶体积分数,随温度的升高而增大,随应变速率的增大而减小。从晶粒细化和动态再结晶组织均匀性考虑,当真应变为0.92时,变形温度选择在950℃~1050℃之间,应变速率选择在0.01s-1为宜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号