首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
采用基于密度泛函理论的量子化学方法研究了催化重整过程中正庚烷脱氢生成烯烃的反应过程。通过对比2条不同的反应路径得出, Pt原子在脱氢反应中生成的Pt H活性中心具有吸取单电子的能力,具有较强的脱除氢自由基的催化能力。反应过程中,正庚烷首先在0价态的Pt原子表面发生化学吸附,随后发生脱除氢自由基反应,生成庚基自由基和Pt H活性中心,优先生成2 庚基自由基,最低反应能垒为7589 kJ/mol;庚基自由基直接与Pt H催化剂活性中心发生化学吸附,进一步发生脱除氢自由基反应,生成庚烯与Pt H2,优先生成2 庚烯,最低反应能垒为1752 kJ/mol;最终,庚烯从Pt H2表面发生脱附,随后Pt H2发生脱附反应生成H2和再生的0价态的单Pt催化剂。该反应路径中最大反应能垒为7589 kJ/mol。实验证明,正庚烷脱氢生成正庚烯的反应过程中优先生成2 庚烯。  相似文献   

2.
采用基于密度泛函理论的量子化学方法,研究了催化重整过程中2-庚烯生成碳正离子及碳正离子的移位和环化过程。结果表明,在L酸活性中心作用下,2-庚烯中与双键相连的仲碳上C-H键优先发生异裂反应,主要产物为2-庚烯-4-碳正离子;随碳正离子的位置从C(4)向C(5)、C(6)、C(7)逐步移动,烯烃碳正离子能量逐渐增高,碳正离子移位的反应能垒在104.88~120.80 kJ/mol。2-庚烯-4-碳正离子和2-庚烯-5-碳正离子中的碳正离子容易发生移位,生成2-庚烯-6-碳正离子;2-庚烯-6-碳正离子和2-庚烯-7-碳正离子容易发生五元环环化或六元环环化反应,反应能垒为54.89~59.05 kJ/mol。相对碳正离子继续移位生成2-庚烯-7-碳正离子,2-庚烯-6-碳正离子优先发生环化反应,因此2-庚烯催化重整的主要产物具有五元环分子结构。  相似文献   

3.
甲烷无氧芳构化的碳-氢键活化反应和Mo/分子筛催化剂   总被引:1,自引:0,他引:1  
 甲烷无氧脱氢芳构化反应,无论其反应机理如何,甲烷C-H键的活化反应是必经之路, 其C-H键的断裂反应是甲烷活化参与反应的第一步。甲烷C-H键的活化有异裂和均裂2种途径,它们决定着甲烷芳构化反应机理。在Mo/HZSM-5催化剂上,甲烷C-H键的活化途径主要为异裂。主导C-H键异裂和正碳离子生成的因素是Mo物种的极化作用和HZSM-5的质子酸作用。Mo物种的作用是使甲烷的C-H键极化,部分被活化的甲烷与HZSM-5的质子酸相互作用,生成H2和CH3+,后者分解生成碳烯和H+,释放出的H+返回给分子筛,构成H+催化的循环。在甲烷无氧脱氢芳构化反应中,除了按正碳离子机理进行的C-H键异裂反应外,还有按自由基机理进行的C-H键均裂反应,尤其是均裂生成碳烯的反应不可以忽视,2种机理有协同催化作用。甲基正离子、甲烯和甲基自由基都是甲烷C-H 键活化反应的活性中间体,特别是前二者更为重要。论述了甲烷在无气相氧条件下的C-H键活化反应及其活性中间体的生成途径,以及Mo/分子筛催化剂在甲烷C-H键活化反应中的催化功能。  相似文献   

4.
采用基于密度泛函理论(DFT)的量子化学方法研究了乙醛氧化生成乙酸的反应过程。结果表明:无氧条件下链引发过程最难发生,反应能垒达到380.78 kJ/mol,但氧气可将此过程的反应能垒降至116.26 kJ/mol;乙酰基自由基生成过氧乙酸以及链终止反应的各步骤的反应能垒均较低,反应较快;过氧乙酸转化为乙酸的反应较难发生,为整体反应过程的速率控制环节。此过程有2个可能的反应路径,速率控制步骤分别为过氧乙酸均裂生成乙酸自由基和羟基自由基的过程和过氧乙酸和乙醛反应生成乙醛单过氧乙酸酯中间化合物的过程,反应能垒分别为147.18、137.21 kJ/mol。  相似文献   

5.
 为了研究催化裂化汽油中噻吩类含硫化合物的生成机理,分别在小型固定流化床(FFB)装置和小型流化床装置(ACE)中考察了庚烯与H2S、己硫醇在固体酸催化上的反应。结果表明,在固体酸催化剂上己硫醇主要分解为H2S与烯烃,转化为噻吩类含硫化合物的概率很小。因此,在庚烯与H2S反应中,噻吩及烷基噻吩的生成不是以饱和硫醇为过渡态,而是以不饱和硫醇为过渡态。烯烃在催化剂的L酸中心作用下失去负氢离子生成烯基正碳离子,烯基正碳离子与H2S结合生成不饱和硫醇,不饱和硫醇接着进行负氢离子转移、环化,并进一步脱氢生成噻吩或烷基噻吩。在400℃~500℃下, 噻吩及烷基噻吩的生成反应是吸热反应,其平衡收率比较高。不饱和硫醇过渡态经负氢离子转移、环化后再夺氢生成四氢噻吩的反应是放热反应, 平衡收率很低。固体酸催化剂提供了大量具有脱氢活性中心的L酸,且烯烃与H2S在贫氢的酸催化环境里反应只有生成具有共轭结构的五元噻吩才是最稳定的,因此噻吩或烷基噻吩是烯烃与H2S反应的主要产物。噻吩与烯烃发生烷基化反应生成烷基噻吩,烷基噻吩在酸性催化剂表面上发生负氢离子转移、环化、脱氢反应生成甲基苯并噻吩。  相似文献   

6.
采用基于密度泛函理论的量子化学从头算法,计算了不同类型1-烷基四氢萘分子中α位C-H键断裂的反应能垒和反应热,讨论了1-烷基四氢萘的供氢能力,并考察了1-烷基四氢萘分子中烷基的链长和异构化程度对该α位C-H键断裂的影响。结果表明,与四氢萘相比,1-甲基四氢萘分子中甲基旁α位C-H键更易断裂,因此1-甲基四氢萘的供氢能力比四氢萘更强。如果1-烷基四氢萘分子中的烷基取代基不影响其旁边α位C-H键断裂产物自由基的p-π共轭,该烷基的链长及异构化程度的变化对α位C-H键断裂的影响不大,也即对1-烷基四氢萘的供氢能力的影响很小;1-叔丁基四氢萘中的叔丁基破坏了α位C-H断裂产物自由基的p-π共轭结构,导致1-叔丁基四氢萘的供氢能力低于四氢萘。  相似文献   

7.
为深入认识汽油在使用过程中氧化生胶的反应机理,选取汽油中相同碳数的典型烃分子作为模型化合物,采用基于密度泛函理论的量子化学从头计算方法,建立了不同结构的汽油分子通过氧化链式自由基反应生成相对分子质量较大、极性较高的沉积物分子的反应网络。通过对比不同反应路径的反应能垒大小,得出容易氧化生胶的汽油烃分子的结构特点以及贡献生成沉积物的关键控速步骤和关键中间体,从而为抑制该氧化生胶过程提出关键措施。结果表明,汽油分子结构中存在双键α位C-H、叔位C-H或苯基α位C-H时,容易引发链式自由基反应,但能否继续向沉积物的反应方向进行取决于相对分子质量增大后的产物中是否仍然存在双键α位C-H、叔位C-H、苯基α位C-H或者C=O这种使得相邻C-H键变弱的吸电子基团。另外,在氧化生胶反应过程中,氢过氧化物(ROOH)和过氧自由基(ROO·)是最关键的2个中间体,抑制氧化生胶反应的关键在于清除它们。  相似文献   

8.
在固定床积分反应器中实验研究了Pt/MOR催化剂催化重芳烃临氢脱烷基的失活动力学。实验以异丙苯为反应原料,在反应压力0.8 MPa、温度范围673.15~733.15K、体积空速1~2h-1的条件下,得到了失活动力学数据。基于实验现象建立了Pt/MOR催化剂幂函数表观失活动力学模型,即由反应产物引起的连串失活。通过拟合实验数据估计了失活动力学模型的参数。结果表明:外扩散对脱烷基反应的影响可以忽略不计,内扩散对脱烷基反应的影响较小;异丙苯临氢脱烷基的反应活化能和催化剂失活的活化能分别为44.15kJ/mol和79.00kJ/mol。Pt/MOR催化剂失活动力学模型的秩和与残差分布检验结果表明,该失活动力学模型在显著性水平α=0.05下是显著的,即所得失活动力学模型有较高的拟合精确度和可信度。  相似文献   

9.
Pt基双金属是一种具有发展前景的丙烷脱氢催化剂,CO2在Pt基催化剂上辅助丙烷脱氢的微观反应机理与优势能量路径尚不明确,为此,采用密度泛函理论(DFT)计算研究了Pt(111)表面及Pt3Mn(111)表面上丙烷直接脱氢反应(PDH)及CO2辅助丙烷脱氢反应(CO2-ODH)的反应网络与关键步骤。计算结果表明:CO2的加入可以降低PDH速控步骤的能垒,对于消耗表面H有利,促进了丙烷脱氢反应正向移动,有利于生成丙烯,从而改变了反应路径和反应动力学;CO2在消除积炭反应中的能垒较高,但是Mn的引入有利于CO2消除积炭。此外,第二金属组分Mn的引入,不但有利于产物丙烯脱附,还提高了C—C裂解能垒,从而提高了丙烯的选择性。  相似文献   

10.
通过密度泛函理论(DFT)计算研究了Zn-Pt/ZSM-5催化丙烷脱氢的反应机理,筛选出最优能量途径。研究发现丙烷在Zn-Lewis和Pt-Lewis酸位点上具有不同的反应路径和限速步骤。Bader电荷计算结果表明,丙烷分子吸附后,[Zn-O-Pt]2+活性位点中Pt上的电子密度增加,有利于丙烷活化,Pt位点对H的吸引能力更强,导致Pt—H键断裂生成H2需要克服较高能垒。Pt的引入改变了Zn/ZSM-5的电子性质,影响其催化剂性能。在反应体系中引入CO2改变了丙烷脱氢反应路径,降低了限速步骤能垒,促进反应正向进行。  相似文献   

11.
Chain initiation reactions in the oxidation process of lubricant base stock molecules were studied by molecular simulations. Two ways to initiate lubricant oxidation were investigated. They were the dissociation of chemical bonds in base stock molecules and the reaction between base stock molecules and oxygen (O2), respectively. Reaction activation energies of above methods were calculated. The results show that C—C bonds are more likely to break than C—H bonds to generate free radicals by the pyrolysis of chemical bonds. The C—C bonds with tertiary carbon atoms are preferential positions to crack. However, bond dissociation energies of them are above 360 kJ/mol, which are difficult to occur under lubricant working conditions. The chain initiation is more likely to occur by the way that O2 attacks the two atoms in C—H bonds at the same time, and embeds into the C—H bond to produce hydrocarbon peroxides. And then, the O—O bond is cracked to form hydroxyl radicals and alkoxy radicals. The C—H bonds with tertiary carbon atoms are the preferential reaction sites, whose reaction activation energy is about 190.11 kJ/mol.  相似文献   

12.
赵如松  王雪强  高俊斌  高金森 《石油化工》2007,36(11):1110-1113
以正庚烷为高碳烃的模型化合物,在微反装置上对正庚烷的引发裂解进行了研究。从化学键能的角度筛选了引发剂,键能为180~260kJ/mol的化合物对正庚烷热裂解有较好的引发效果,其中硝基乙烷的效果最明显。以硝基乙烷为引发剂,考察了反应温度、引发剂用量、停留时间和水蒸气稀释比(水蒸气与正庚烷的质量比)对正庚烷引发裂解性能的影响。实验结果表明,升高反应温度、增加引发剂添加量都可提高正庚烷转化率、裂解气收率和乙烯收率。在反应温度600℃、停留时间0.22s、水蒸气稀释比0.15、硝基乙烷摩尔分数2.0%的条件下,与不添加硝基乙烷相比,裂解气收率和乙烯收率分别由1.42%和0.68%增加到7.09%和3.09%。  相似文献   

13.
基于密度泛函理论和周期性结构模型,在分子水平上研究了化学链燃烧中H2S与CuFe2O4载氧体表面相互作用的微观反应机理。结果表明,H2S分子解离的SH、S和H基团倾向于吸附在O.1原子顶位上。H2S分子在CuFe2O4载氧体表面发生的反应主要包括3个步骤:H2S分子吸附、H2S脱氢和H2O分子形成。首先H2S吸附在CuFe2O4载氧体表面进而发生两步脱氢反应,随着反应的进行,产生的H2O分子从载氧体表面脱附,CuFe2O4载氧体表面的S基团发生迁移并填入氧空位形成硫化表面。其中H2O分子的形成需克服135.57 kJ/mol的反应能垒,为速控步骤。围绕Cu原子进行的反应路径是H2S与CuFe2O4载氧体表面反应的主要路径,与实验结果吻合。  相似文献   

14.
覆炭载体镍催化剂脱氢活性和表面酸性研究   总被引:2,自引:1,他引:1  
以制备的覆炭γAl2O3(CCA)为载体,制备了Ni/CCA系列催化剂,并对其环己烷脱氢活性进行了考察;以吡啶为探针分子,用热重分析(TG)和差示热分析(DTA)技术测定了Ni/CCA催化剂的表面酸性,并计算了Ni/γ-Al2O3和Ni/CCAⅡ两种催化剂的脱吡啶活化能。结果表明,Ni/CCA催化剂的脱氢活性优于Ni/γ-Al2O3催化剂;CCA载体的覆炭量对Ni/CCA催化剂的脱氢活性有一定的影响,当覆炭的质量分数在7.92%时出现脱氢活性峰,并且Ni/CCA催化剂具有较好的低温脱氢活性;CCA载体和Ni/CCA催化剂表面的吡啶物理吸附量和化学吸附量均低于γ-Al2O3载体和Ni/γ-Al2O3催化剂,CCA载体和Ni/CCA催化剂的脱附化学吸附毗啶的DTA曲线上有两个吸热峰,说明在CCA载体和Ni/CCA催化剂上有两个表面酸性中心;求得吡啶在Ni/γ-Al2O3和Ni/CCAⅡ催化剂的强酸中心的脱吡啶活化能分别为188 kJ/mol和225 kJ/mol,在弱酸中心的脱吡啶活化能分别为30 kJ/mol和31 kJ/mol。  相似文献   

15.
催化裂化生成干气的反应机理研究   总被引:6,自引:1,他引:5  
 以4-甲基辛烷、4- 乙基辛烷为模型化合物,采用分子模拟技术,研究了催化裂化过程生成干气的反应化学。结果表明,烷烃分子首先在催化剂酸性中心作用下发生质子化反应,烷烃分子链上易受到氢质子进攻的位置一般在其叔碳原子或碳链中心碳原子附近的C-H键或C-C键处,形成反应过渡态-五配位正碳离子,反应过渡态主要以桥式结构形式存在,随后共价键的异裂主要发生在烷烃分子链上桥式活化结构α位的C-H键或C-C键处,前者异裂生成H2,当后者相连的是小于碳三的小分子基团时,异裂就会生成CH4、C2H6、C2H4等干气分子。  相似文献   

16.
采用小型固定流化床装置考察了二氢菲、八氢菲和全氢菲在分子筛催化剂上的裂化反应产物,并进行了对比分析。结果表明,在 REUSY 分子筛催化剂上,二氢菲主要发生脱氢缩合反应,生成菲、芘等三环以上多环芳烃甚至焦炭,并阻碍了作为溶剂的正庚烷的裂化;八氢菲、全氢菲主要发生环烷环开环反应,八氢菲的环烷环开环反应产物中乙烯、丙烯、丁烯等 C2~C4烃以及烷基苯的氢转移反应产物萘、烷基萘等 C10烃的收率较高,全氢菲的环烷环开环反应产物中环己烷、烷基苯等汽油组分烃的收率较高;另外,较少量的八氢菲、全氢菲通过脱氢缩合生成菲、芘等三环以上多环芳烃甚至焦炭。氢化菲氢化程度越高越容易发生环烷环开环反应,氢化程度越低越容易发生脱氢反应生成三环以上多环芳烃和焦炭,且氢化程度过低还会抑制饱和烃的裂化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号