首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用端环氧基丁腈橡胶(ETBN)对双酚A型氰酸酯树脂(CE)进行改性,采用DSC和FT-IR表征了CE/ETBN树脂体系的固化行为和固化产物的结构,同时采用TGA和介电分析仪(DEA)对其耐热性和介电性能进行了研究。结果表明:ETBN的加入能显著促进CE的固化,改性体系的固化放热焓随着ETBN含量的增加而下降;CE/ETBN树脂体系的耐热性能随着ETBN含量的增加略有下降,当ETBN的质量分数为15%时,改性体系在N2气氛中的Td5为392℃,并且在80~140℃下其介电损耗正切值相对稳定。  相似文献   

2.
环氧及酚醛树脂增韧改性氰酸酯树脂研究   总被引:6,自引:0,他引:6  
用环氧树脂(EP)及酚醛树脂(PF)对氰酸酯树脂(CE)进行增韧改性,对改性CE的凝胶时间和DSC曲线进行研究并确定了改性CE的固化工艺。红外光谱分析表明改性CE固化时形成了柔韧性结构。研究了改性CE的力学性能、热性能、电性能及微观形态,发现EP的加入可增加CE的柔韧性,PF的加入可使CE的热稳定性损失减小。当CE/EP/PF的质量比为70/15/15时改性CE的弯曲强度和冲击强度分别从改性前的123.6 MPa、5.2 kJ/m2提高到134.5 MPa、16.7 kJ/m2,耐热性及电性能改变不大。  相似文献   

3.
端环氧基液体丁腈橡胶改性环氧树脂结构胶的研究   总被引:2,自引:0,他引:2  
采用ETBN(端环氧基液体丁腈橡胶)增韧EP(环氧树脂),制备了单组分EP结构胶。利用红外光谱(FT-IR)、扫描电镜(SEM)等手段对结构胶的拉伸剪切强度及微观结构进行了表征。结果表明:制备该结构胶的适宜条件为m(EP):m(ETBN)=20:3,80℃均匀搅拌20 min,130℃固化1 h;由该结构胶制成的钢-钢胶接件,其室温拉伸剪切强度为23.66 MPa,并且其耐介质性能良好,说明ETBN对EP的增韧效果较好。  相似文献   

4.
采用硅烷偶联剂表面处理过的纳米二氧化硅(nano-SiO2)作为填料改性超支化聚硅氧烷/氰酸酯(HBPSi/CE)树脂体系。结果表明:适量的nano-SiO2既可同时提高HBPSi/CE树脂的韧性和强度,又可改善其耐水性能;当nano-SiO2质量分数为3.0%时,nano-SiO2/HBPSi/CE体系的冲击强度(14.1 kJ/m2)和弯曲强度(118.4 MPa)分别比HBPSi/CE树脂提高了26%和12%,其吸水率低于HBPSi/CE树脂,介电常数略高于HBPSi/CE树脂,介电损耗角正切与HBPSi/CE树脂相当。  相似文献   

5.
端环氧基丁腈橡胶增韧环氧树脂的结构与性能   总被引:3,自引:0,他引:3  
采用端环氧基丁腈橡胶(ETBN)对环氧树脂进行增韧,研究了增韧环氧树脂浇注体的力学性能.结果表明,随着ETBN含量的增大,冲击强度、断裂伸长率明显增加,其弯曲强度、拉伸强度及拉伸模量降低,表明ETBN对环氧树脂具有明显的增韧效果.环氧树脂浇注体拉伸断面SEM照片表明,固化反应过程中ETBN均匀地分散在环氧树脂体系中.  相似文献   

6.
以4,4'-二氨基二苯砜(DDS)为固化剂,用端环氧基丁腈橡胶(ETBN)增韧4,4'-二氨基二苯甲烷环氧树脂(TGDDM),通过差示扫描量热法和傅里叶变换红外光谱法分析了ETBN增韧TGDDM的固化行为,考察了ETBN含量对增韧TGDDM力学性能和吸水率的影响,表征了ETBN增韧TGDDM的微观形貌。结果表明,随着ETBN含量的增加,增韧TGDDM的固化反应放热量逐渐下降,固化放热峰温度则逐渐升高,ETBN与TGDDM在固化过程中反应完全;随着ETBN含量的增加,增韧TGDDM的弯曲强度和弯曲弹性模量都逐渐下降,冲击强度和断裂韧性则先升高后降低,当ETBN质量分数为6.7%时达到最大值,分别为15.9 k J/m2和0.74 MPa·m1/2;未增韧TGDDM表面平滑,裂纹几乎呈直线状,表现为脆性断裂;加入的ETBN均匀分散在TGDDM中,随着ETBN含量的增加,ETBN粒子尺寸增大;ETBN增韧TGDDM具有良好的耐水性。  相似文献   

7.
甲基笼型倍半硅氧烷/CE杂化复合材料的力学性能   总被引:1,自引:0,他引:1  
以甲基笼型倍半硅氧烷(POSS)作为氰酸酯树脂(CE)的改性剂,制备出一种POSS/CE杂化复合材料。研究了杂化复合材料中POSS用量对CE结构及力学性能的影响,同时采用红外光谱(FT-IR)法对不同POSS/CE体系的反应性进行了研究。结果表明:POSS的加入对CE的反应性影响不大,有利于POSS/CE杂化体系固化工艺的制定;当杂化体系中w(POSS)=5%时,材料的冲击强度(9.7 kJ/m2)相对最大(提高了49%),弯曲强度(90 MPa)也相对较高,说明适量的POSS对CE具有明显的增韧、增强作用。  相似文献   

8.
选用丙烯腈-丁二烯-苯乙烯(ABS)高胶粉(ABSHR)和丁腈橡胶(NBR)对苯并噁嗪(BOZ)/磷酸三苯酯(TPP)/ABS无卤阻燃体系进行增韧改性;探讨了增韧剂对ABS无卤阻燃体系的阻燃性能和力学性能的影响;同时采用扫描电镜(SEM)对其断面形态进行表征。结果表明:ABSHR添加量为10份时,体系的冲击强度提高了35%,其拉伸强度和氧指数影响较小;NBR添加量为10份时,体系的冲击强度从4.62 kJ/m2提高到26.3 kJ/m2,提高了469%。体系的拉伸强度和氧指数有所下降。DMA显示在丁腈橡胶增韧的体系中,苯并噁嗪树脂的Tg与ABS高胶粉增韧体系相比向低温方向移动了4.6℃。  相似文献   

9.
环氧树脂改性氰酸酯树脂固化体系研究   总被引:1,自引:0,他引:1  
采用差示扫描量热(DSC)法对脂环族环氧树脂(L2)改性双酚A型氰酸酯树脂(CE)的固化反应历程进行了研究,并探讨了L2用量对CE耐热性能和粘接强度等影响。结果表明:L2对CE的固化反应具有催化作用,但当w(L2)≥30%时,其催化效果因稀释作用而降低;纯CE和CE/L2体系在等温(210℃)固化反应过程中,其转化率在起始反应10 min内分别达到80%和91%左右;当w(L2)=10%时,CE/L2改性体系的拉伸剪切强度(22.80 MPa)和压缩剪切强度(44.40 MPa)较高,同时其耐热性能较好。  相似文献   

10.
用液体端羧基丁腈橡胶(CTBN)对氰酸酯树脂(CE)进行了增韧改性,通过树脂体系的凝胶时间曲线和DSC曲线确定了体系的固化工艺,并制备了玻璃纤维(GF)增强复合材料。CTBN改性后的CE树脂及复合材料具有良好的力学性能,其中固化树脂的弯曲强度和冲击强度分别提高了34.6%和48%,复合材料的弯曲强度和冲击强度分别提高了11.4%和21.3%,这来源于CTBN对氰酸酯树脂的增韧作用及与GF良好的粘接性能。  相似文献   

11.
采用改性热塑性聚合物(MTP30)对4,4'-二氨基二苯甲烷四缩水甘油基环氧树脂(TGDDM)进行增韧改性,借助红外光谱及DSC研究其预聚合和固化反应动力学,探讨了固化反应机理,评估了增韧效果,并使用SEM观察了其微观结构形貌。结果显示,采用15phr MTP30增韧TGDDM/MNA体系时,其浇注体的断裂伸长率为7.19%,相比于未增韧时提升了425%;冲击强度为15.6k J/m2,相比未增韧时提升了109%;热变形温度(HDT)和玻璃化温度(Tg)仅略有下降;MTP30在TGDDM树脂中分散均匀,增韧效果显著。  相似文献   

12.
采用纳米SiC和环氧树脂(EP)对双酚A型氰酸酯树脂(CE)进行改性。研究了不同含量的纳米SiC对CE/EP/纳米SiC复合体系反应性及CE/EP/纳米SiC复合材料力学性能的影响,采用透射电子显微镜表征了材料的微观形貌,利用差示扫描量热法研究了固化树脂的热性能。结果表明,纳米SiC对CE/EP/纳米SiC复合体系具有明显的催化作用,并且能使复合材料的冲击强度提高123.62%,弯曲强度提高140.29%,有效发挥其增强增韧作用,还能很好地保持复合材料的耐热性能。  相似文献   

13.
主要介绍了氰酸酯(CE)树脂的增韧机制,综合分析了国内外CE树脂的增韧改性研究成果(包括热固性树脂改性CE、热塑性树脂改性CE、橡胶弹性体改性CE和纳米无机材料改性CE等),并对CE树脂的发展前景进行了展望。  相似文献   

14.
通过环氧树脂与二烯丙基双酚A合成了一种烯丙基酚氧树脂,用以增韧双马来酰亚胺。在单因素试验的基础上,根据Box-Benhnken的中心组合试验设计原理,选取改性树脂体系组分为影响因子,应用响应面法进行3因素3水平的18组的设计试验,改性树脂性能(弯曲强度,冲击强度,热变形温度)为响应值,对改性树脂组分配比进行优化。结果表明,改性树脂组分配比BMI、DDS、APO、DABPA、DAP为2∶1∶0.2∶0.84∶0.1(物质的量比)时,综合2性能最好,此时改性双马树脂体系的冲击强度可达到21.4 k J/m,弯曲强度为200.5 MPa,热变形温度为195.8℃。  相似文献   

15.
制备碱溶性聚丙烯酸酯乳液用于增韧水溶性酚醛树脂,研究不同用量的碱溶性聚丙烯酸酯乳液对共混树脂体系性能的影响,通过傅立叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)表征共混树脂体系间的相互作用和树脂断裂面的微观形貌,采用万能试验机测试共混树脂体系的力学性能。结果表明,碱溶性聚丙烯酸酯乳液的添加量在20%以内,聚丙烯酸酯乳液的分子链段能够充分展开,共混树脂体系为完全均相体系。FTIR分析说明,聚丙烯酸酯树脂与酚醛树脂之间形成化学键合作用,SEM微观形貌分析表明,随着聚丙烯酸酯乳液用量的添加,纯酚醛树脂的典型脆性断裂逐渐转变为韧性断裂,起到良好的增韧作用。当酚醛树脂与聚丙烯酸酯乳液的质量比为8∶2时,共混树脂体系的力学性能达到最佳,冲击强度为10.7 k J/m2,拉伸强度达12.3 MPa,压缩强度为21.2 MPa。  相似文献   

16.
以二烯丙基双酚A(DBA)和端乙烯基丁腈橡胶(VTBN)为增韧剂,两者与双马来酰亚胺(BMI)共聚后得到的预聚体作为酚醛型氰酸酯的改性剂,制备了一种改性酚醛型氰酸酯树脂。研究结果表明:DBA对酚醛型氰酸酯具有很好的催化作用,5%DBA[相对于氰酸酯(CE)质量而言]就可使CE在200℃以下固化;当m(DBA)∶m(VTBN)=5∶3时,体系的弯曲强度为132 MPa、冲击强度为12.6 J/m2、20℃和260℃剪切强度分别为16.88 MPa和9.77 MPa;改性体系的耐热性较好,其5%热失重分解温度和最大热分解速率温度分别为427.6℃和439.0℃。  相似文献   

17.
苯并噁嗪(BOZ)树脂作为一种新型的热固性PF(酚醛树脂),具有诸多优异性能,但其韧性和耐磨性较差。以AE-BMI(含烯丙基醚的双马来酰亚胺预聚体)为改性剂制备AE-BMI/BOZ改性树脂,并对其力学性能和摩擦性能进行了研究。结果表明:适量的AE-BMI对BOZ树脂具有明显的增韧增强作用,并且其耐磨性也明显提高;当w(AE-BMI)=15%时,AE-BMI/BOZ改性体系的弯曲强度(125.53 MPa)和冲击强度(11.57 kJ/m2)分别比纯BOZ体系提高了57%和60%,并且其摩擦因数(0.27)和磨损率[18.50×10-6mm3/(N.m)]分别比纯BOZ体系降低了15.6%和50.6%。  相似文献   

18.
聚硫橡胶增韧环氧树脂研究   总被引:2,自引:1,他引:1  
制备了室温固化双组分聚硫橡胶增韧环氧树脂胶粘剂,研究了聚硫橡胶与环氧树脂(ER)比例、甲组分处理温度及反应时间时胶粘荆剪切强度的影响.采用冲击实验检测固化产物的冲击强度,通过扫描电镜(SEM)分析增韧体系的微观形态结构特征.实验结果显示,mER:m聚硫橡胶=8:1、甲组分于160℃下反应2.5 h时,剪切强度达到23.8 MPa,剥离强度2.81 kN/m,冲击强度8.92 kJ/m2,胶粘剂的耐介质性能良好.SEM测试结果表明,聚硫橡胶对ER增韧作用明显.  相似文献   

19.
碳纤维增强环氧改性氰酸酯树脂复合材料性能研究   总被引:1,自引:0,他引:1  
分别采用热重分析(TGA)法、动态力学分析(DMA)法研究了碳纤维增强环氧改性氰酸酯树脂(CE/EP/CF)复合材料的热稳定性、耐热性及动态热力学性能,研究了此种复合材料强力环(NOL环)的力学性能。结果表明,CE/EP/CF复合材料具有优良的耐热性和热稳定性,玻璃化转变温度为226.33℃,NOL环层间剪切强度为48.7MPa。扫描电子显微镜(SEM)分析表明,CF与CE/EP树脂间的界面粘接良好。  相似文献   

20.
以DP(二烯丙基双酚A)为BMI(双马来酰亚胺)的共聚改性剂,制备BMI/DP共聚树脂;然后以PAI(聚酰胺酰亚胺)为增韧改性剂,制备PAI增韧改性BMI/DP共聚树脂。研究结果表明:当w(PAI)=3%(相对于共聚树脂质量而言)时,改性树脂具有较好的增韧效果;此时,其冲击强度(11.81 kJ/m2)提高了19%以上,KIC(临界应力强度因子)值(1.45 MPa.m0.5)和GIC(临界应变能释放率)值(351.4 J/m2)均比增韧前提高了30%以上,表现出较好的断裂韧性,并且其断面为典型的韧性破坏;其Tg(玻璃化转变温度)达到了252.5℃,5%热失重温度仍超过405℃,说明其耐热性几乎没有下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号