首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用连续升温金相法测定TC4合金的相变温度为985℃。基于EET理论与钛合金相变基本理论,以纯钛的α/β转变温度为依据,利用表征合金相重构难易程度的价电子结构参数nA,合金组成相α与β的晶胞权重W,相修正系数C及β稳定元素的温度系数TMc,给出了一种计算TC4合金(α+β)/β转变温度的EET方法。用该EET理论模型计算的TC4合金的相变温度为974.58℃。TC4合金(α+β)/β转变温度的EET理论计算值与连续升温金相法试验测定值的相对误差为1.1%,说明从价电子结构层次计算TC4合金的(α+β)/β相变温度是可靠的。  相似文献   

2.
TC4-DT钛合金SH-CCT曲线的测定   总被引:1,自引:0,他引:1       下载免费PDF全文
通过金相法进行了TC4-DT钛合金相变点温度Tβ测定,并利用热膨胀法进行了验证。对不同冷却速度下TC4-DT钛合金的热膨胀量曲线进行测绘,结合显微组织分析和硬度测试,绘制了TC4-DT钛合金的SH-CCT曲线。结果表明,TC4-DT钛合金的相变温度为(945±5) ℃。当冷速小于10 ℃/s时,由β相转变的α相呈不同取向的集束状,同时,晶内出现网篮状α相;当冷速大于10 ℃/s后,组织为马氏体α′相+块状αm相;当冷速超过100 ℃/s后,组织为马氏体α′相。TC4-DT钛合金发生马氏体转变的开始温度为836 ℃,终了温度为760 ℃。  相似文献   

3.
针对BT25两相钛合金,对比研究了计算法、热膨胀法、差示扫描量热法和连续升温金相法4种方法测定(α+β)/β相变点的一致性问题。计算法根据各合金元素及杂质含量对钛合金相变点的影响值,推算出公式,得出BT25合金的相变点约为1023℃;热膨胀法和差示扫描量热法根据钛合金发生(α+β)→β转变时体积和热量的变化,测得BT25合金的相变点约分别为1029.2和1029.85℃;而连续升温金相法通过观察不同淬火温度的试样在光学显微镜下的显微组织变化,确定升温过程中初生α相完全消失的温度即为相变温度,约为1029℃。结果表明采用计算法、热膨胀法和差示扫描量热法与金相法测定BT25钛合金的(α+β)/β相变点一致,基于多种测定方法的综合运用对于钛合金相变点的准确测定具有重要意义。  相似文献   

4.
针对TC21钛合金,采用JMat Pro软件模拟计算得到该合金的等温转变曲线(TTT),同时采用膨胀法及金相法绘测其TTT曲线进行对比验证。模拟计算结果表明,在温度800~875℃析出α相速度最快。实验结果表明,由于TC21钛合金β→α相转变时相变体积效应小,膨胀法无法测得等温转变开始时间;金相法能较准确的绘测出等温转变曲线,表明在温度800~840℃左右其次生α相析出速度最快,也就是TTT曲线鼻尖位置,β→α相转变对温度敏感性高,淬火及退火时效时在此温度区间的停留时间不能过长,在低温时析出次生α相的速度最慢;JMat Pro软件模拟计算结果和实验绘制得到的TTT曲线吻合得较好。  相似文献   

5.
钛合金完全相变温度的检测方法   总被引:1,自引:0,他引:1  
本文用金相试验淬火法测定了TC11、TC4、Ti-1023、Ti-679三种不同类型合金的β转变温度。试验结果表明,钛合金的完全相变温度取决于添加元素的化学成分和含量,成分偏析和组织不均匀对β转变温度的影响很小。  相似文献   

6.
本文以Ti-575钛合金为研究对象,分别对魏氏组织和双态组织Ti-575钛合金进行热模拟压缩实验,分析不同热变形条件下的真应力-应变曲线,构建了其在α+β相区的热变形本构方程,并分别探究了变形温度和应变速率对微观组织的影响。结果表明,流变应力值随着变形温度的升高而降低,随着应变速率的升高而升高;当应变速率为0.1 s-1及以上时,随着变形温度的升高流变曲线出现了不连续屈服现象。根据两种组织Ti-575钛合金流变曲线的峰值应力,分别计算出其在α+β相区的变形激活能,构建Arrhenius型热变形本构方程。在不同的热变形条件下,随着变形温度的升高,魏氏组织Ti-575钛合金动态再结晶的程度越来越大,而双态组织Ti-575钛合金等轴αp相体积分数和尺寸逐渐降低;随着应变速率的降低,魏氏组织Ti-575钛合金动态再结晶的程度逐渐增大,而双态组织Ti-575钛合金等轴αp相体积分数先减少后增加;双态组织Ti-575钛合金在830℃或1 s-1应变速率下热压缩时,显微组织中残留少量的粗片层α相没有发生相变,βt基体中会有硅化物析出。  相似文献   

7.
利用Gleeble-1500D热模拟试验机对TA10钛合金在变形温度为800~1050℃,应变速率为0.01~5 s-1条件下进行拉伸变形,研究合金的流变应力及显微组织,分析其高温拉伸性能。结果表明:变形温度为800~900℃时,流变曲线有明显的应力峰值,软化机制主要是动态再结晶;而变形温度为1000~1050℃时,流变曲线没有明显的应力峰值,软化机制为动态回复;而当变形温度为800℃时,TA10钛合金的应变速率越高动态再结晶的进行程度越低;以(α+β/β)相变点为界,在相变点以下的温度区间,随着变形温度的升高,TA10钛合金的强度和塑性下降;在相变点以上的温度区间,TA10钛合金的强度下降,塑性上升;而在相变点的过渡区间,强度上升,塑性下降。当应变速率一定时,TA10钛合金在温度为800℃时能够获得强度和塑性的较好匹配。  相似文献   

8.
本文对+β两相区成形的TA15钛合金环形锻件组织、性能进行了分析,结果表明TA15钛合金在两相区成形可得到均匀的等轴α+β转变组织并具有良好的综合力学性能,因此β相变点以下20℃~40℃是TA15钛合金较理想的锻造温度.  相似文献   

9.
针对新型β钛合金,研究了计算法、连续升温金相法和差热分析法测定(α+β)/β相变点温度。根据计算法推算出公式,得出该合金的相变点约为782.3℃,连续升温金相法和差热分析法测定相变点分别约为790、783.5℃。结果表明,3种测试方法测定钛合金的相变点较一致,通过3种相变点测试结果,可确定该合金相变温度为(785±5)℃。  相似文献   

10.
退火温度对TC4钛合金动态断裂韧性的影响   总被引:1,自引:0,他引:1  
采用示波冲击法,对750℃、相变点以下(20~60)℃、相变点以上10℃等7种不同热处理状态TC4钛合金的动态断裂韧性进行了测试,结合金相组织观察及扫描电镜断口形貌观察,分析了初生α相含量及次生α相形貌对TC4钛合金动态断裂韧性的影响.结果表明,对于初生α+β转变组织的TC4合金,初生α相含量在47%~50%范围,次生...  相似文献   

11.
TC21钛合金相变点测定   总被引:2,自引:2,他引:0  
采用计算法和连续升温金相法测定TC21钛合金的α+β→β相转变温度.结果表明,两种方法所得数据非常接近,本实验所选用的TC21钛合金的相变点为(975±5)℃.  相似文献   

12.
针对TA15钛合金相变温度与两相区(α+β)锻造加热温度符合性问题,对TA15钛合金棒料及锻件进行了多批次对比性的工艺验证,结果表明:TA15棒料相变点测定有效区间在992~996℃,根据相变点选取原则,将两相区(α+β)锻造加热温度(955±5)℃进行固化并进行试验,锻件形状、尺寸、力学性能、高低倍组织、超声检测等全部达到了规定的技术要求。  相似文献   

13.
<正>TC32钛合金是中国航发航材院自主研发的中高强高韧α+β型钛合金,其名义成分为Ti-5Al-3Mo-3Cr-1Zr-0.1S。根据不同的热加工工艺,TC32钛合金可获得不同的组织和性能:采用两相区锻造+双重退火热处理,锻件可获得α+β组织,其综合性能与同组织状态的TA15相当,具有较高的强韧性和强塑性匹配;采用准β锻造+双重退火热处理,锻件可获得网篮组织,  相似文献   

14.
通过高精度膨胀法研究了固溶态Ti-1300合金在400~700℃等温条件下相变动力学。研究表明:固溶态Ti-1300合金中亚稳β相的分解动力学可用Johnson-Mehl-Avrami(JMA)方程表征,并获得400~700℃温度范围内JMA方程的特征参数K和n,一定程度上反映了合金中亚稳β相的分解机制。当Ti-1300合金在400~420℃时效时,亚稳β相的分解方式主要为βm→β′+β→α+β;当合金在500 ~700℃时效时,亚稳β相的分解方式主要为βm→α+β;同时在等温条件下,时效初期α相的形核率较快,且含量迅速增加,后期达到一定量后保持稳定。根据计算和试验结果,得到了Ti-1300合金在500 ~700℃等温条件下亚稳β相的分解的TTT曲线,鼻尖温度约为600℃。  相似文献   

15.
通过高精度膨胀法研究了固溶态Ti-1300合金在400~700℃等温条件下相变动力学。研究表明:固溶态Ti-1300合金中亚稳β相的分解动力学可用Johnson-Mehl-Avrami(JMA)方程表征,并获得400~700℃温度范围内JMA方程的特征参数K和n,一定程度上反映了合金中亚稳β相的分解机制。当Ti-1300合金在400~420℃时效时,亚稳β相的分解方式主要为β_m→β′+β→α+β;当合金在500~700℃时效时,亚稳β相的分解方式主要为β_m→α+β;同时在等温条件下,时效初期α相的形核率较快,且含量迅速增加,后期达到一定量后保持稳定。根据计算和试验结果,得到了Ti-1300合金在500~700℃等温条件下亚稳β相的分解的TTT曲线,鼻尖温度约为600℃。  相似文献   

16.
采用扫描电镜和透射电镜分析近β型Ti-1300钛合金在初始锻造态、固溶+淬火态(β和α+β固溶态)以及固溶+时效态下的显微组织变化。结果表明:锻造态合金中初生α相内部发生孪生切变行为,基体β相晶内发生β→α相变。合金经过α+β固溶淬火处理,残留的初生α相中仍然可观察到细小孪生α相。孪生α相有两种不同变体(α1和α2),互成60°生长方向,而且与基体α相也成60°的孪生关系,其间的晶体学取向关系为:{1120}α,twinning//{1120}α,〈 0001〉α,twinning//〈 1101〉α。Ti-1300钛合金与大多数近β型钛合金的时效特征相类似。  相似文献   

17.
研究了近α型TA15和Ti60、(α+β)型TC21和近β型TB17钛合金在100、400、500、600、650和700 ℃时的高温力学性能。结果表明,温度在100~500 ℃时,TB17合金的高温强度最高,TA15合金的高温强度最低,TC21合金的高温强度高于Ti60合金;当温度超过600 ℃后,TB17合金的高温性能变化幅度最大,强度最低,Ti60合金的变化幅度最小,强度最高,TC21合金的强度介于TA15与Ti60合金之间,并逐渐与TA15合金接近;当温度在100 ℃时,4种合金应变硬化和应变软化作用相当,应力-应变曲线处于较为平衡的状态;当温度在400 ℃时,TB17合金变形以应变软化为主,应力随着应变增加显著降低;当温度在600 ℃时,TC21和TA15合金变形也开始以应变软化为主,但TA15合金应力的下降幅度低于TC21合金;直到温度在650 ℃时,Ti60合金变形才以应变软化为主。  相似文献   

18.
采用热膨胀法和金相法研究了以5℃/min的加热速率连续加热某Ti-Al-Mo-Cr-Zr-Si系新型钛合金过程中的相变过程、组织演变规律以及α相→β相的转变速率。结果表明:该合金连续加热过程中,在280~505℃温度范围内,板条状α相逐渐长大,且含量逐渐增多,发生β→α相变;在505~610℃温度范围内,板条状α相变细、变短,发生由短程扩散控制的α→β相变,此阶段温度对α相→β相的转变速率影响不大;在610~930℃温度范围内,板条状α相含量明显减少,直至消失,发生由长程扩散控制的α→β相变,此阶段α相→β相的转变速率随着温度的升高明显加快,当温度达到900℃时,α相→β相的转变速率逐渐减缓。  相似文献   

19.
Ti-55钛合金连续冷却转变曲线的测绘及显微组织的演变   总被引:1,自引:0,他引:1  
通过Gleeble热模拟实验,测绘Ti-55钛合金的连续冷却转变曲线(CCT图)。结果表明:当冷速由0.1℃/S加快到150℃/s时,Ti-55钛合金中主要发生β→α与β→α′的相转变过程,其中β→α′转变开始的临界冷速为5℃/s左右,Ti-55钛合金中马氏体转变开始温度为855℃,转变结束温度为818℃。  相似文献   

20.
变形温度对TC11钛合金超塑性的影响   总被引:1,自引:0,他引:1  
通过高温拉伸试验研究TC11钛合金在应变速率0.001 s~(-1)、变形温度810~1050℃的超塑性变形行为,并用金相显微镜和透射电镜对变形试样的微观组织进行观察和分析.结果表明,在β单相区,TC11钛合金不能呈现超塑性;而在α+β两相区的810~980℃温度范围内,TC11钛合金呈现出超塑性,且最佳温度在900℃附近,其最大延伸率为595%,此时的超塑性变形过程中有晶内变形、界面滑动、动态再结晶或扩散蠕变的参与,且界面滑动出现在α/β相界面.α相和β相的相对含量对超塑性有较大的影响,初生α相含量在70%附近时对应着TC11钛合金的最佳超塑性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号