首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A configurable full‐duplex low‐voltage differential signaling transceiver is presented, which can be configured to operate either for smaller differential channels (a few inches of striplines) or for longer channels (10 m of twisted pair cables). The configurability is embedded in the form of functionalities like pre‐emphasis, equalization, and slew rate control within the transceiver. The transmitter employs a hybrid voltage–current‐mode driver, which due to replica action, achieves a high‐impedance current‐mode signal dispatch and at the same time provides a matched impedance at the near end for improved intersymbol interference. The transmitter achieves slew rate control through a band‐limited pre‐driver, while the pre‐emphasis is achieved through a capacitive feed‐forward. The receiver employs a large‐input common‐mode first stage enclosed in a common‐mode control loop that enables its first stage to also act like a domain shifter (VDDIO‐to‐VDDCORE) reducing the overall power consumption. The equalization in the receiver is implemented by using carefully sized active inductive loads inside the receiver. The transceiver is designed and fabricated in 150‐nm complementary metal–oxide–semiconductor, sharing the space with a larger die, occupying an area of 400 × 400μm. The measurement results demonstrate that the transceiver is operating at 2 Gbps both for a 4‐in microstrip and a 10‐m twisted pair CAT6 cable with 30 and 180 ps of total jitter, respectively. The built‐in impedance calibrator minimizes the spread in the on‐die termination at the near end provided by the transmitter‐minimizing bit error rate across process, voltage, and temperature corners. The transmitter consumes a total power of 17 mW operating at 2 Gbps, that is, 8.5 pJ/bit of energy consumption; the receiver consumes a total power of 3.5 mW while driving a load of 5 pF at 2 Gbps. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A low‐power low‐jitter voltage‐mode (VM) transmitter with two‐tap pre‐emphasis and impedance calibration for high‐speed serial links is presented. Based on a comprehensive analysis of the relationship between impedance, supply current, and pre‐emphasis of the output driver, an impedance control circuit (ICU) is presented to maintain the 50 Ω output impedance and suppress the reflection, a self‐biased regulator is proposed to regulate the power supply, and an edge driver is introduced to speed up the signal transition time. Therefore, the signal integrity (SI) of the transmitter is improved with low power consumption. The whole transmitter is implemented in 65‐nm CMOS technology. It provides an eye height greater than 688 mV at the far end with a root‐mean‐squared jitter of less than 6.99 ps at 5 Gbps. The transmitter consumes 15.2 mA and occupies only 370 μm × 230 μm. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

3.
This paper presents the design of an all‐digital delay‐locked loop (ADDLL) with duty‐cycle correction using reusable time‐to‐digital converter (TDC). The proposed ADDLL uses a reusable TDC for achieving a wide‐operating frequency range. In addition, it achieves the frequency doubling output clock easily by changing the quantization interval. It is implemented in a 0.18‐µm complementary metal‐oxide semiconductor technology. This circuit corrects the duty cycle and synchronizes the input and output clocks in 10 clock cycles. The output duty cycle is corrected to 50 ± 1.5% as the input duty cycle ranges from 25% to 75%. The acceptable input frequency range is from 300 to 900 MHz without frequency doubling. The acceptable input frequency range is from 150 to 450 MHz when using frequency doubling. It dissipates 6.2 mW from a 1.8‐V supply at 900 MHz. The peak‐to‐peak and RMS jitters at 900 MHz are 14 and 1.8 ps, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents some CMOS rail‐to‐rail low‐voltage (1.2 V) switched buffer topologies, to be used as input stages in switched‐opamp circuits. The main buffer is based on the use of an op‐amp featuring rail‐to‐rail input and output swing with constant transconductance over the input common mode voltage. The designed buffer exhibits a total harmonic distortion of about ‐61 dB for 5 MHz clock frequency with 2 Vpp input amplitude. Its characteristics have been compared with those of other rail‐to‐rail switched buffers, based on the main CMOS OTA (simple, symmetrical, Miller), showing good distortion even at frequencies in the MHz range and satisfying the requirements for the series switches. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a fast‐corrected all‐digital duty‐cycle corrector (DCC) with synchronous input clock. The proposed DCC has many features, including fast locking in 4 cycles, wide range correction, and synchronous 50% duty‐cycle clock with an input clock. The circuit can operate from 500 to 900 MHz and corrects a wide range of input duty cycle ranging from 25 to 75%. The duty‐cycle error of the output clock is between ?2.4 and 2.7%. The largest static phase error between the input and output clock is ?44 ps at 900 MHz. The RMS and peak‐to‐peak jitters are 1.9 and 14.7 ps at 900 MHz, respectively. The proposed DCC is implemented in a 0.18‐µm complementary metal oxide semiconductor process. The proposed DCC occupies an area of 0.05 mm2 and dissipates 23 mW with 1.8‐V supply voltage at 900 MHz. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
For multi‐Gb/s/pin parallel dynamic random access memory (DRAM) interface, a crosstalk cancelling voltage‐mode driver is proposed. The voltage‐mode driver is composed of a main driver and sub‐drivers where the cancellation signal is generated by the sub‐drivers. The outputs of the main driver and sub‐drivers are combined by a capacitive coupling so the direct current (DC) output swing is not affected by the crosstalk cancellation and the sub‐drivers may not consume DC power. The proposed crosstalk cancelling voltage‐mode driver implemented in a 0.11‐µm complementary metal‐oxide semiconductor (CMOS) technology improves the horizontal eye openings by 22.6 ps at 4‐Gbps/pin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A low‐jitter and low‐power dissipation delay‐locked loop (DLL) is presented. A proposed multi‐band voltage control delay unit (MVCDU) is employed to extend the operation frequency of the DLL by controlling the delay cell within the MVCDU. The jitter of DLL is reduced due to MVCDU's low sensitivity. The delay cell in the MVCDU employs a differential configuration to further reduce the noise impact from the fluctuation in the supply and ground voltage. The operating frequency of the proposed DLL ranges from 120 to 420 MHz. The proposed design has been fabricated in a TSMC 0.18µm CMOS process. The measured RMS and peak‐to‐peak jitters are 4.86 and 34.55 ps, respectively, at an operating frequency of 300 MHz. The power dissipation is below 14.85 mW at an operating frequency of 420 MHz. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A simultaneously bidirectional inductively coupled link has been developed to provide higher signaling bandwidth for a given inductively coupled channel. Two types of echo signals, that is, the resistive and inductive echo signals, are canceled without an inductive replica load to save silicon area. The resistive echo signal is canceled with a replica driver driving a resistive replica load, while the inductive echo signal is canceled by deliberately controlling the timing of a receiver comparator. The prototype implemented in a 0.13‐µm complementary metal–oxide–semiconductor (CMOS) technology occupies 0.019 mm2 including an on‐chip channel inductor and shows 9.1‐pJ/b energy efficiency at 3.0‐Gbps signaling bandwidth, that is, 1.5 Gbps in each signaling direction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we propose transmitter and receiver circuits for high‐speed, low‐swing duobinary signaling over active‐terminated chip‐to‐chip interconnect. In active‐termination scheme port impedance of transmitter and receiver is matched with characteristic impedance of the interconnect. Elimination of the passive terminators helps in reducing the transmitted signal level without degrading the 0signal detectability of the receiver. High‐speed current‐mode receiver and transmitter circuits are designed, so that the input port impedance of the receiver and the output port impedance of the transmitter are matched with characteristic impedance of the link. These Tx–Rx pair is used to validate the proposed active‐termination scheme. We also propose a duobinary precoder architecture suitable for high‐speed operation and a low‐power broadband equalizer topology for compensating the lossy long interconnect. The duobinary transmitter and receiver circuits are implemented in 1.8 V, 0.18 µm Digital CMOS technology. The designed high‐speed duobinary Tx/Rx circuits work up to 8 Gb/s speed while transmitting the data over 29.5 in. FR4 PCB trace for a targeted bit error rate (BER) of 10?15. The power consumed in the transmitter and receiver circuits is 42.9 mW at 8 Gb/s. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A class AB version of the conventional super source follower (SSF) is described. The circuit greatly increases slew rate (SR) and current efficiency, maintaining the low distortion and low output resistance of the SSF. Class AB operation is achieved without extra power dissipation or supply requirements, and without bandwidth or noise degradation. The circuit can advantageously replace the SSF in a wide variety of analog systems, opening a new research line in analog design. To illustrate the widespread application of this cell, a class AB differential unity‐gain buffer, a class AB differential current mirror and two class AB differential transconductors are designed, fabricated in a 0.5µm CMOS technology and tested. Measurement results using a dual supply of ±1.65V show that the proposed class AB version of the SSF improves SR by a factor 21.5 and increases bandwidth by 10%, keeping noise level, input range, power consumption, and supply requirements unaltered. The fabricated class AB current mirror features a THD at 100 kHz of ? 62dB for signal currents 20 times larger than the bias current. The fabricated transconductors feature an IM3 at 1 MHz of ? 56.6dB for output currents more than 13 times larger than the bias currents. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
For a 6‐Gbps/lane clock‐forwarded link, a wireline receiver has been developed. The phases of the sampling clocks are aligned to the center of the input data eye by a clock and data recovery (CDR) circuit. In the CDR circuit, the sampling clock phases are rotated by a phase rotating phase locked loop (PLL). A three‐tap decision feedback equalizer (DFE) compensates for the loss of cable together with a continuous‐time linear equalizer (CTLE) to ensure sufficient eye opening for the CDR circuit to find the optimum sampling phase. The DFE coefficients are adaptively calculated based on the data and edge samples. Implemented in a 65‐nm CMOS process, the three‐lane 6‐Gbps/lane receiver for a clock‐forwarded link occupies 0.63 mm2 including pads and consumes 288 mA from a 1.2‐V supply. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A USB3.0 compatible transmitter and the linear equalizer of the corresponding receiver are presented in this paper. The architecture and circuit design techniques used to meet the strict requirements of the overall link design are explored. Output voltage amplitude and de‐emphasis levels are programmable, whereas the output impedance is calibrated to 50Ω. A programmable receiver equalizer is also presented with its main purpose being to compensate for the channel losses; this is employed together with a DC offset compensation scheme. The 6.25‐GHz equalizer provides a 10 dB overall gain equalization and 5.5‐dB peaking at the maximum gain setting. Designed using a mature and well established 65 nm complementary metal oxide semiconductor process, the layout area is 400 µm × 210 µm for the transmitter core, and 140 µm × 70 µm for the equalizer core. The power consumption is 55 and 4 mW, respectively, from a 1.2 V supply at a data rate of 5 Gbps. The target application for such high‐speed blocks is to implement the critical part of the physical layer that defines the signaling technology of SuperSpeed USB3 PHY. However, identical iterations of the circuitry discussed can be used for similar high‐speed applications like the PCI express (PCIe). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This article presents a new CMOS receiver analog front‐end for short‐reach high‐speed optical communications, which compensates the limited product bandwidth length of 1‐mm step‐index plastic optical fiber (SI‐POF) channels (45 MHz · 100 m) and the required large‐diameter high‐capacitance Si PIN photodetector (0.8 mm–3 pF). The proposed architecture, formed by a transimpedance amplifier and a continuous‐time equalizer, has been designed in a standard 0.18‐µm CMOS process with a single supply voltage of only 1 V, targeting gigabit transmission for simple no‐return‐to‐zero modulation consuming less than 23 mW. Experimental results validate the approach for cost‐effective gigabit SI‐POF transmission. Comparative analysis with previously reported POF receivers has been carried out by introducing a useful figure of merit. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This work proposes a 14 b 150 MS/s CMOS A/D converters (ADC) for software‐defined radio systems requiring simultaneously high‐resolution, low‐power, and small chip area at high speed. The proposed calibration‐free ADC employs a wide‐band low‐noise input sample‐and‐hold amplifier (SHA) along with a four‐stage pipelined architecture optimizing scaling‐down factors for the sampling capacitance and the input trans‐conductance of amplifiers in each stage to minimize thermal noise effect and power consumption. A signal‐insensitive 3‐D fully symmetric layout achieves a 14 b level resolution by reducing a capacitor mismatch of three MDACs. The prototype ADC in a 0.13µm 1P8M CMOS technology demonstrates a measured differential nonlinearity (DNL) and integral nonlinearity within 0.81LSB and 2.83LSB at 14 b, respectively. The ADC shows a maximum signal‐to‐noise‐and‐distortion ratio of 64 and 61 dB and a maximum spurious‐free dynamic range of 71 and 70 dB at 120 and 150 MS/s, respectively. The ADC with an active die area of 2.0mm2 consumes 140 mW at 150 MS/s and 1.2 V. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A CMOS circuit realization of a highly linear multiple‐output differential operational transconductance amplifier (OTA) has been proposed. The presented approach exploits a differential pair as an input stage with both the gate and the bulk terminals as signal ports. For the proposed OTA, improved linearity is obtained by means of the active‐error feedback loop operating at the bulk terminals of the input stage. SPICE simulations of the OTA show that, for 0.35 µm AMS process, total harmonic distortion at 1.36Vpp is less than 1% with dynamic range equal to 60.1 dB at power consumption of 276 μW from 3.3 V supply. As an example, both single output and dual differential OTAs are used to design third‐order elliptic low‐pass filters. The cut‐off frequency of the filters is 1 MHz. The power consumption of the OTA‐C filter utilizing the dual output differential OTA is reduced to 1.24 mW in comparison to 2.2 mW consumed by the single output differential OTA‐C filter counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A low‐power CMOS receiver baseband analog (BBA) circuit based on alternating filter and gain stage is reported. For the given specifications of the BBA block, optimum allocation of the gain, input‐referred third‐order intercept point (IIP3), and noise figure (NF) of each block is performed to minimize current consumption. The fully integrated receiver BBA chain is fabricated in 0.18µm CMOS technology and IIP3 of 30 dBm with a maximum gain of 59 dB and NF of 31 dB are obtained at 3.6 mW power consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Active‐RC biquad is proposed, which allows the DC level of the input of operational amplifier (op‐amp) to be different from that of the op‐amp output, enabling the low‐voltage operation. The proposed biquad realizes a second‐order transfer function with only one op‐amp, rendering even lower power consumption. By cascading two biquads, a 0.6 V fourth‐order filter is realized in a 0.13µm CMOS technology. While dissipating only 0.42 mW, the filter shows 2.11 MHz cut‐off frequency and 62 dB spurious‐free dynamic range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a hybrid architecture of digital pulse width modulator (DPWM) which applies a counter, a phase‐shifted circuit, and a carry chain is proposed. Dual‐edge‐triggered flip‐flops are used in the phase‐shifted circuit to generate signals with 45° phase shift, which not only improves the resolution of the DPWM but also reduces the resource consumption in the carry chain. Furthermore, a hardware compensation method is used to solve the duty cycle increment phenomenon that affects the regulation accuracy of converter. An 11‐bit DPWM with the proposed architecture is implemented and tested by Xilinx Artix‐7 FPGA. The experimental results show a high resolution of 32 ps and a good linearity where R2 is 0.99 and verify the effect of duty cycle compensation.  相似文献   

20.
A technique to improve the input and output range of CMOS transconductors with resistive current division for continuous tuning is presented. Using it, a tunable transconductor is proposed which features high linearity over a wide input range and simplicity. Measurement results of the transconductor, fabricated in a 0.5 µm CMOS process, show an IM3 of ?66 dB for a ±1.65 V supply and two input tones centered at 1 MHz of 1 Vpp each, and only 0.7 mW of power consumption. This represents an improvement of 13 dB versus the same transconductor using conventional current division. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号