首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid increase in energy demand, the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector. Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL) transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels. Therefore, development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels, such as, gasoline, diesel and jet fuel can be accomplished through various thermochemical processes and processing routes. The major steps for the production of BtL fuels involve feedstock selection, physical pretreatment, production of bio-oil, upgrading of bio-oil to transportation fuels and recovery of value-added products. The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.  相似文献   

2.
生物质能源是惟一可再生,可替代化石能源转化气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要阐述了国内外纤维素生物质预处理的研究进展和酸水解工艺。并对一些工艺的优缺点进行了分析和比较,指出了纤维素生物质预处理和酸水解的研究方向。  相似文献   

3.
Environmental impacts associated with the consumption of fossil fuels and the need to generate power through renewable resources demands the usage of alternative materials. The objective is the production of clean energy from materials like lignocellulosic biomass to produce second‐generation (2G) ethanol. A software in the Matlab program is elaborated to simulate the simultaneous saccharification and fermentation (SSF) process of lignocellulosic biomass for the 2G ethanol production in batch reactors. Studying the effects of the process variables, it was found that the higher interference is caused by cellulose concentration. Higher concentrations of the product in batch processes are obtained with the maximum cellulose concentrations, cells, and enzyme.  相似文献   

4.
Biomass has in recent years been considered as a raw material for the production of fuels and chemicals. This work discusses the reasons for the increased interest in mainly lignocellulosic biomass. Gasification, pyrolysis, and depolymerization by hydrolysis are analyzed as key biomass technology. We also discuss which of the sugars obtained via depolymerization by hydrolysis can be processed into fuel or key intermediates of the chemical industry. Lignocellulosic biomass contains such extractants as fatty acids and terpenes, and we therefore describe the catalytic reactions of these substances for the synthesis of fuels and chemicals. Some typical reactions of biomass processing (oxidation, hydrogenation, cracking, etc.) are conceptually close to the process widely known in the refining and chemical industries. There are, however, other considerations due to, e.g., the large number of functional (hydroxyl and other) groups, and the processing of biomass components therefore requires dehydration, aldol condensation, ketonization, decarboxylation, etc. We cover the fundamentals of the approaches to selecting catalysts for these reactions.  相似文献   

5.
Catalytic conversion (hydrolysis) of carbohydrate polymers present in the lignocellulosic biomass into fermentable sugars is a key step in the production of bioethanol. Although, acid and enzymatic catalysts are conventionally used for the catalysis of various lignocellulosic biomass, recently application of immobilized enzymes (biocatalysts) have been considered as the most promising approach. Immobilization of different biocatalysts such as cellulase, β-glucosidase, cellobiose, xylanase, laccase, etc. on support materials including nanomaterials to form nanobiocatalyst increases catalytic efficacy and stability of enzymes. Moreover, immobilization of biocatalysts on magnetic nanoparticles (magnetic nanobiocatalysts) facilitates easy recovery and reuse of biocatalysts. Therefore, utilization of nanobiocatalysts for catalysis of lignocellulosic biomass is helpful for the development of cost-effective and ecofriendly approach. In this review, we have discussed various conventional methods of hydrolysis and their limitations. Special emphasis has been made on nanobiocatalysts used for hydrolysis of lignocellulosic biomass. Moreover, the other most important aspects, like nanofiltration of biomass, conversion of lignocellulose to nanocellulose, and toxicological issues associated with application of nanomaterials are also discussed.  相似文献   

6.
介绍了国内外Aspen Plus在生物质热解及后续加氢研究方向的利用情况,将其分为反应研究和工艺流程研究两部分。其中关于反应的研究较少,但证明了Aspen Plus可以模拟生物质快速热解和热解油加氢反应;研究多集中在整体工艺流程的模拟,并在质能平衡基础上对流程做了经济、环境、能耗的分析。最后总结了Aspen Plus在生物质热解加氢方向的不足和今后可以深入的研究方向。  相似文献   

7.
Concern with environmental issues such as global climate change has stimulated research into the development of more environmentally friendly technologies and energy sources. One critical area of our economy is liquid fuels. Fast pyrolysis of lignocellulosic biomass for liquids production is of particular concern, as it is one of the most interesting ways to produce renewable liquid fuel for transport and heat and power production.The aerobic biodegradability of various pyrolysis oils from different origins and of a EN 590 diesel sample was examined using the Modified Sturm (OECD 301B). The results demonstrate that all fast pyrolysis oils assessed are biodegradable with similar shaped curves with 41–50% biodegradation after 28 days, whereas the diesel sample reached only 24% biodegradation. Since pyrolysis oils achieved biodegradability over 20% these are classified as inherently biodegradable. Modelling of biodegradation processes was successfully performed with a first-order chemical reaction.The biodegradability results obtained for biomass pyrolysis oils are compared to those of conventional and alternative fuels.  相似文献   

8.
木质纤维原料的热化学液化   总被引:14,自引:0,他引:14  
用热化学方法 ,可以将木质纤维原料液化成为烃、醇、酚、羧酸等多种有机物以及一些无机物。在所有的木质纤维原料液化手段中 ,热化学液化是最容易实现、同时又最经济的方法。综述了木质纤维原料热化学液化反应机理及实现木质纤维原料液化的工艺进展。将木质纤维原料转化成液体燃料或化工原料 ,对充分利用自然界中可再生资源 ,降低燃烧石油造成的环境污染 ,具有重要的意义  相似文献   

9.
木质纤维素类生物质制取燃料及化学品的研究进展   总被引:5,自引:0,他引:5  
木质纤维素类生物质含有丰富的纤维素和半纤维素多糖,通过微生物发酵将它们转化为能源及高附加值的化学品,对于缓解全球能源危机带来的压力和解决环境污染问题具有重要意义。介绍了木质纤维素类生物质的结构特征;评述了预处理方法,包括稀酸、高温液态水蒸气爆破、CO2爆破、氨爆、碱法、有机溶剂法、生物处理法;重点介绍由生物质生产乙醇、丁醇及生物柴油的研究现状。指出开发高效环保的预处理方法、构建耐毒高产菌株和应用连续发酵或补料批式发酵方式等是加快木质纤维素类生物质发酵利用工业化进程的关键所在。  相似文献   

10.
液态烷烃C5+是汽油、柴油、航空燃油等当前社会的运输燃料的主要成分。本文综述了利用木质纤维素衍生平台化学品制备液体燃料的研究进展,着重总结了生物质衍生平台化学品通过碳链增长得到长链含氧化合物,然后经过加氢脱氧(HDO)得到C7+液体烷烃的技术研究进展。木质纤维素衍生平台化学品包括山梨醇、糠醛、5-羟甲基糠醛(HMF)、环戊酮、甲基呋喃、酚类、丙酮、丁醇、乙醇、乙酰丙酸、γ-戊内酯等。其中,糠醛、5-羟甲基糠醛和环戊酮在碱性催化剂作用下能与其他羰基化合物发生羟醛缩合反应实现碳链增长;甲基呋喃、苯类及苯酚类衍生物可以在强酸催化作用下通过烷基化/羟烷基化反应实现碳链增长;丙酮能与乙醇、丁醇发生α-烷基化反应实现碳链增长;乙酰丙酸可以转化为戊酸、丁烯或当归内酯,再分别通过酮基化反应、烯烃齐聚反应和加成反应实现碳链增长。诸多利用生物质衍生物化学品制备长链烷烃的路径中,利用5-羟甲基糠醛和甲基呋喃制备长链烷烃的技术路线存在路径过长、原料不易获取的问题;利用环戊酮和苯酚类物质能够得到高密度长链环烷烃,是一条有竞争力的路线;糠醛和乙酰丙酸易于从生物质中大规模制取,且利用糠醛和乙酰丙酸制备长链烷烃的反应路径短,较易实现工业应用。  相似文献   

11.
K.D. Bartle  J.M. Jones  R. Plant  A.B. Ross 《Fuel》2011,90(3):1113-2955
Studies have been made of the combustion of droplets of liquid hydrocarbons, including kerosene and Diesel fuels, biofuels such as FAME and the alcohols, especially ethanol and n-butanol, and of pulverised solid biomass materials such as pine wood and Miscanthus which burn in an analogous fashion. Information is given on the burning rates of both the liquids and the solids and data given on soot formation yields for the different fuels. The mechanism of soot formation is discussed in relation to (1) volatile liquid fuels such as n-heptane, alcohols and aviation fuels, (2) liquid fuels having higher aromatic levels such as Diesel fuels, and (3) biomass particle combustion.  相似文献   

12.
随着不可再生的石化资源的不断消耗以及生态环境的不断恶化,可再生资源和能源的开发和利用受到越来越多的重视。木质纤维素是地球上最丰富的可再生生物质资源,蕴藏量和产量巨大,具有广阔的开发利用前景。本文在介绍国内外木质纤维素资源开发利用研究的基础上,结合当今世界生物质能领域的研发现状,分别概述了经由呋喃类化合物及乙酰丙酸等木质纤维素基平台化合物分子,制备液体燃料和燃料添加剂的最新研究进展。在总结归纳合成途径的同时,分析了现阶段面临的主要问题及可能的解决办法,以期能为木质纤维素类生物质能源化利用的研究提供有益的参考与借鉴。  相似文献   

13.
OVERVIEW: Efficient conversion of biomass to hydrogen is imperative in order to realize sustainable hydrogen production. Sorption enhanced steam reforming (SESR) is an emerging technology to produce high purity hydrogen directly from biomass‐derived oxygenates, by integrating steam reforming, water‐gas shift and CO2 separation in one‐stage. Factors such as simplicity of the hydrogen production process, flexibility in feedstock, high hydrogen yield and low cost, make the SESR process attractive for biomass conversion to fuels. IMPACT: Recent work has demonstrated that SESR of biomass‐derived oxygenates has greater potential than conventional steam reforming for hydrogen production. The flexibility of SESR processes resides in the diversity of feedstocks, which can be gases (e.g. biogas, syngas from biomass gasification), liquids (e.g. bioethanol, glycerol, sugars or liquid wastes from biomass processing) and solids (e.g. lignocellulosic biomass). SESR can be developed to realize a simple biomass conversion process but with high energy efficiency. APPLICATIONS: Hydrogen production by SESR of biomass‐derived compounds can be integrated into existing oil refineries and bio‐refineries for hydrotreating processing, making the production of gasoline and diesel greener. Moreover, hydrogen from SESR can be directly fed to fuel cells for power generation. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Kazuhiro Kumabe 《Fuel》2008,87(7):1422-1427
We have researched and simulated the BTL (biomass to liquid process) in which woody biomass is converted to transportation liquid fuels. In the present study, methanol (MeOH) was considered as a liquid fuel. The BTL-MeOH was designed and the environmental and economic analysis of the process was performed from the viewpoint of CO2 emission and capital and operating costs. A case study focusing on heat and power resources was conducted. The result revealed that the process required an independent case of heat and power for CO2 reduction; however, the cost of this was high due to the cogeneration with a steam turbine. Therefore, the introduction of a low-cost cogeneration, e.g., with a gas turbine, was required for commercialization.  相似文献   

15.
生物质作为唯一的可再生含碳资源,通过热化学液化可以实现其高附加值转化为燃料和化学品。木质纤维素多元醇液化产物富含活性羟基,具有可调变的羟值和黏度,在聚氨酯材料的生产中得到了广泛的应用。由于液化过程中同时存在缩聚、重排等副反应的发生,导致液化产物中含有醛、酮、酸、酯等羰基化合物,使用合适的催化剂对液化产物进行加氢提质是提高下游聚氨酯泡沫品质的必需步骤。为此,对木质纤维素多元醇液化工艺、液化动力学和液化机理等方面进行了总结,对液化产物的提质方法及工艺技术的选取进行了阐述,提出了“液化耦合提质”的新工艺,并对未来的研究重点及发展趋势提出了可行的建议。  相似文献   

16.
生物质能源是惟一可再生、可替代化石能源转换成气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要对生物质的热解气化方式进行了介绍,着重介绍了生物质气化集中供气、供热、发电、合成液体燃料、制氢等技术方面的研究和应用现状,并指出了目前存在的主要问题,提出了我国在生物质气化领域的重点研究方向。  相似文献   

17.
In recent years, utilization of renewable sources for biofuel production is gaining popularity due to growing greenhouse gas (GHG) emissions which causes global warming. There has been a great effort in exploring alternative feedstock for bioethanol production. In this context, the production of third-generation bioethanol from macroalgae has emerged as an alternative feedstock to food crop-based starch and lignocellulosic biomass. This is mainly due to the fast growth rate of macroalgae, no competition with agricultural land, high carbohydrate content and relatively simple processing steps compared to lignocellulosic biomass. This review paper provides an insight of recent innovative approaches for macroalgae bioethanol production, including conventional and advanced hydrolysis process to produce fermentable sugar, various fermentation technologies, economic analysis and life cycle assessment. With the current technology maturity, efficient utilization of macroalgae as sustainable source for bioethanol and other value-added chemicals production could be achieved in the near future.  相似文献   

18.
Previously, ionic liquids were found to partially dissolve lignocellulosic biomass. Here, it is reported that the biomass itself does not dissolve directly, but that it is hydrolyzed first before the constituents (cellulose, hemicellulose and lignin) dissolve into the ionic liquid. By addition of an acidic catalyst, this hydrolysis step can take place at milder conditions. Acetic acid is chosen as a suitable acidic catalyst, because it is already present in lignocellulosic biomass in the form of acetyl groups on the hemicellulose. Here, it is shown that acetic acid also works as co-solvent, increasing the solubility of the constituents of lignocellulosic biomass in the ionic liquid. The milder conditions for hydrolysis result in a higher degree of utilization of the lignocellulosic biomass, whereby all constituents can be fully recovered and further processed and the ionic liquid can be reused.  相似文献   

19.
The pyrolysis behaviour and kinetics of forest shrub wastes (Cytisus multiflorus, Spartium junceum, Acacia dealbata and Pterospartum tridentatum) from the Portuguese Central Inland Region have been studied in a thermobalance, as a previous step for their valorization by pyrolysis in order to obtain fuels and chemicals within the framework of the BioREFINA-Ter project. The kinetic model consists of a multi-component mechanism that describes the volatile formation involving three independent and parallel reaction networks corresponding to the decomposition of the three main biomass pseudo-components: hemicellulose, cellulose and lignin. The thermogravimetric curves and kinetic parameters have been compared with those obtained for other materials, and the chemical features of the biomasses have been determined. Although the samples are highly heterogeneous because of their bark and leaf content, the degradation of these shrubby biomasses is similar to other lignocellulosic materials, evidencing that their valorization by pyrolysis is feasible.  相似文献   

20.
Biomass is the term given to naturally‐produced organic matter resulting from photosynthesis, and represents the most abundant organic polymers on Earth. Consequently, there has been great interest in the potential exploitation of lignocellulosic biomass as a renewable feedstock for energy, materials and chemicals production. The energy sector has largely focused on the direct thermochemical processing of lignocellulose via pyrolysis/gasification for heat generation, and the co‐production of bio‐oils and bio‐gas which may be upgraded to produce drop‐in transportation fuels. This mini‐review describes recent advances in the design and application of solid acid catalysts for the energy efficient upgrading of pyrolysis biofuels. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号