首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
利用甲醇和氢气的混合气体,用微波等离子体CVD方法在480℃下成功地在硅片表面制备出纳米金刚石薄膜,本文研究了甲醇浓度和沉积温度对金刚石膜形貌的影响.通过Raman光谱、原子力显微镜及扫描隧道显微镜对样品的晶粒尺寸及质量进行了表征.研究结果表明:通过提高甲醇浓度和降低沉积温度可以在直径为50 mm的硅片表面沉积高质量的纳米金刚石薄膜,晶粒尺寸大约为10~20 nm,并对低温下沉积高质量的纳米金刚石薄膜的机理进行了讨论.  相似文献   

2.
微波CVD法低温制备纳米金刚石薄膜   总被引:1,自引:0,他引:1  
利用甲醇和氢气的混合气体,用微波等离子体CVD方法在480℃下成功地在硅片表面制备出纳米金刚石薄膜,本文研究了甲醇浓度和沉积温度对金刚石膜形貌的影响.通过Raman光谱、原子力显微镜及扫描隧道显微镜对样品的晶粒尺寸及质量进行了表征.研究结果表明:通过提高甲醇浓度和降低沉积温度可以在直径为50mm的硅片表面沉积高质量的纳米金刚石薄膜,晶粒尺寸大约为10~20nm,并对低温下沉积高质量的纳米金刚石薄膜的机理进行了讨论.  相似文献   

3.
采用微波等离子体化学气相沉积技术,通过在甲烷和氢气的混合反应气源中通入不同浓度的氮气,合成了氮掺杂的纳米金刚石薄膜.表征结果表明随着氮气浓度的增加,所得到的金刚石薄膜的材料特征发生了明显的改变:膜层晶粒结构由从未见过的大尺寸片状向团簇状再向微颗粒状转变,并且薄膜的表面粗糙度相应变小;同时薄膜中非金刚石组份逐渐增多,膜材的物相纯度下降.氮气浓度除决定了纳米金刚石薄膜中N的掺杂度外,还会对膜材的物相组成、形貌及结构产生巨大的影响.  相似文献   

4.
采用形核 甲烷/氢气生长-辅助气体/甲烷/氢气生长的新工艺,在镜面抛光的单晶硅片上制备了金刚石膜,并用扫描电子显微镜和激光拉曼光谱等测试方法对薄膜的表面形貌和质量性能进行了表征;研究了添加辅助气体对已有金刚石晶型生长的影响.结果表明:以甲烷/氢气为气源时,金刚石膜生长率一般为1.8 μm/h,当分别加入氧气、二氧化碳、氮气时,其生长率都有所提高,其中加入二氧化碳时,其生长率是甲烷/氢气为气源的3倍多,但是加入氩气时,其生长率下降;通过新工艺,在加入氮气或氩气时,第一生长阶段为微米,而第二生长阶段为纳米尺寸,最后制备出具有微/纳米双层复合金刚石膜.  相似文献   

5.
采用微波等离子体化学气相沉积法(MPCVD)以氢气和甲烷为生长源、硼烷作掺杂源,在不同硼碳比(B/C)下制备不同硼含量的掺硼金刚石(BDD)薄膜电极,通过扫描电镜、拉曼光谱对其表面形貌、组成及结晶质量进行对比分析。依次将不同B/C下制备的BDD电极作为工作电极,通过差分脉冲伏安法检测溶液中痕量Cr6+浓度。结果表明,随着B/C增大,BDD电极膜材中金刚石晶粒间密实度下降,晶粒完整度变差;电极电化学检测Cr6+信号随反应气源中B/C增大而增大,当B/C=0.006时信号最强,电极检测限可达12ppb。加入干扰离子后检测效果依然良好。但B/C继续增大检测信号会随之降低。B/C在0.004~0.01范围内制备的BDD电极具有相对较好的电化学检测Cr6+性能。  相似文献   

6.
采用等离子辅助热丝化学气相沉积(PAHFCVD)装置,分别用甲烷和乙醇为碳源进行了金刚石薄膜的制备。并运用X射线衍射仪(XRD)和扫描电子显微镜(SEM)测试手段对沉积的金刚石薄膜进行了观察分析。结果表明,用乙醇制备的金刚石薄膜比甲烷制得的金刚石薄膜的生长率要高,膜的缺陷少、颗粒均匀。  相似文献   

7.
用电镜、激光ROMAN谱分析等手段研究工艺参数对CVD金刚石膜生长速率和生长质量的影响。结果显示:金刚石薄膜的生长速率随甲烷浓度、基片温度的增加而增加,随工作气压的升高先是增加,而后降低,峰值在15—20kPa处。  相似文献   

8.
利用脉冲电弧放电电离甲醇、乙醇、丙酮等有机溶液在常温、常压下制备了含金刚石成分的碳膜.用扫描电子显微镜(SEM),激光Raman光谱和傅里叶红外光谱(FTIR)研究了薄膜的形貌和质量.结果表明:在相同的放电条件下甲醇比乙醇、丙酮等有机溶液等更有利于金刚石的合成;而提高放电电压和降低甲醇浓度有助于提高薄膜中金刚石成分的含量.  相似文献   

9.
在热丝CVD装置中,以氢气、丙酮、硼酸三甲脂为原料,在YG6上制备了含硼金刚石薄膜.研究丙酮中硼含量对薄膜表面晶形及晶粒度的影响.结果表明,薄膜中渗入适量的硼不改变薄膜表面晶形,细化晶粒.有利于薄膜附着力的提高;而过高的硼含量恶化金刚石薄膜质量,降低薄膜附着力.  相似文献   

10.
利用脉冲电弧放电电离甲醇、乙醇、丙酮等有机溶液在常温、常压下制备了含金刚石成分的碳膜。用扫描电子显微镜(SEM),激光Raman光谱和傅里叶红外光谱(FTIR)研究了薄膜的形貌和质量。结果表明:在相同的放电条件下甲醇比乙醇、丙酮等有机溶液等更有利于金刚石的合成;而提高放电电压和降低甲醇浓度有助于提高薄膜中金刚石成分的含量。  相似文献   

11.
基片温度对纳米金刚石薄膜掺硼的影响   总被引:1,自引:0,他引:1  
采用微波等离子体化学气相沉积法,以氢气稀释的乙硼烷为硼源进行了纳米金刚石(NCD)薄膜的生长过程掺硼,研究了基片温度对掺硼NCD薄膜晶粒尺寸、表面粗糙度、表面电阻和硼原子浓度的影响.利用扫描电子显微镜和原子力显微镜观察NCD薄膜的表面形貌,并通过Imager软件对原子力显微镜数据进行分析获得薄膜的表面粗糙度及平均晶粒尺寸信息;采用四探针测量掺硼NCD薄膜的表面方块电阻,利用二次离子质谱仪对掺杂后NCD薄膜表面区域的硼原子浓度进行测量.实验结果表明,较高的基片温度有利于提高薄膜的导电能力,但随着基片温度的提高,NCD薄膜的平均晶粒尺寸和表面粗糙度逐渐增大;此外,当反应气体中的乙硼烷浓度一定时,掺杂后NCD薄膜的表面硼原子浓度随基片温度升高存在一个饱和值.在所选乙硼烷浓度为0.01%的条件下,基片温度在700℃左右可以在保证薄膜表面电性能的基础上保持较好的表面形貌.  相似文献   

12.
采用甲烷和氢气作为气源,在直径为50 mm的抛光单晶硅片上,利用新型微波等离子体化学气相沉积(MPCVD)装置制备出金刚石膜.用扫描电子显微镜观测金刚石膜的表面形貌,利用激光Raman光谱表征金刚石膜的质量以及X射线衍射检测金刚石膜的成分和晶界缺陷.结果表明V(CH4)/V(H2)为1%,基片温度为845℃时,生长金刚石膜的质量较好,并且具有完整的晶体形貌,但是扫描电子显微镜图×5 000倍时,观察到金刚石膜中明显的晶体缺陷存在,同时X射线衍射图表明金刚石膜的内应力较大.  相似文献   

13.
采用微波等离子体增强化学气相沉积方法(MPECVD),利用氢气和甲烷混合气体,在抛光石英基片上低温沉积出金刚石薄膜。用扫描电子显微镜(SEM)、激光拉曼光谱仪(Raman)和傅立叶红外光谱仪(FTIR)对薄膜的表面形貌、颗粒尺寸、纯度和光学透过性能进行了表征。通过SEM发现,得到的金刚石薄膜的颗粒尺寸为0.2~0.3μm,形核密度超过109cm-2,从薄膜形貌可以发现,较高温度有利于提高薄膜的生长速率和颗粒尺寸的均匀性。通过拉曼光谱和红外透射光谱分析发现,较高温度下沉积的薄膜具有较高的金刚石相含量,薄膜的光学透过性能也相对较好。  相似文献   

14.
等离子体辅助热丝化学气相沉积金刚石膜   总被引:1,自引:1,他引:1  
采用等离子辅助热丝化学气相沉积 (PAHFCVD)装置进行了金刚石薄膜的制备。并运用X射线衍射 (XRD)和扫描电子显微镜 (SEM)测试手段对沉积的金刚石薄膜进行了观察分析。在甲烷与氢气体积比为 2∶98、基体温度为 80 0℃、等离子体偏压 40 0V、沉积气压 4kPa的沉积条件下可获得晶形完整的金刚石膜 ,其沉积速率可达 1 1 μm·h- 1 。  相似文献   

15.
提高[100]织构金刚石薄膜相组成纯度的工艺方法   总被引:4,自引:1,他引:4  
针对目前获得的[100]织构金刚石薄膜大多存在非金刚石相含量较多、从而导致薄膜电阻率不高的欠缺,采用两种改进的微波等离子体化学气相沉积(MWPCVD)工艺,即用形核一刻蚀一生长法和形核一刻蚀一生长一刻蚀一生长……循环沉积法,制备出了相组成纯净度较常规沉积工艺显著提高的[100]织构金刚石膜。SEM和XRD分析表明所获得的膜材均具有[100]的择优取向,是[100]织构膜;Raman光谱和SEM对照分析证实膜材中的非金刚石相含量显著降低,尤其是后者的R21nlan光谱中已无非金刚石相峰存在.表明得到的是一种高纯度的[100]织构金刚石薄膜。通过改进沉积工艺技术制备高纯的[100]织构膜是一种简便有效的获得高质量金刚石薄膜的技术途径.,  相似文献   

16.
银纳米颗粒-玻璃复合薄膜的三阶非线性光学性能   总被引:3,自引:0,他引:3  
采用离子交换结合热处理方法,制备出银纳米颗粒-玻璃复合薄膜.利用光学吸收谱和Z-扫描技术研究了该复合薄膜的线性和三阶非线性光学性能.研究结果表明,延长热处理时间有利于提高银纳米颗粒尺寸和银纳米颗粒在玻璃中的体积分数,导致复合薄膜的三阶非线性系数增大.当熔盐中AgNO3/NaNO3的质量分数由0.1%提高到0.5%时,相同条件热处理后玻璃中银纳米颗粒的尺寸和体积分数有较大增长,复合薄膜的三阶非线性系数增大;进一步提高熔盐中AgNO3/NaNO3的质量分数,热处理后玻璃中银纳米颗粒的尺寸反而降低,但银纳米颗粒在玻璃中的体积分数增大,材料的三阶非线性系数不增反降.  相似文献   

17.
采用原位聚合法制备掺杂无机粒子质量分数从1%~5%的PI/Si O2/Al2O3纳米杂化薄膜.通过SEM发现无机纳米Al2O3和纳米Si O2颗粒在聚酰亚胺基体中有很好的相容性和分散性,其颗粒尺寸大约在100 nm左右.采用万能试验机和宽频介电谱分析仪研究不同浓度Al2O3和Si O2的掺杂对PI薄膜的力学性能和电学性能的影响.当质量分数为3%的时候,杂化薄膜力学性能最佳,具有最大的拉伸强度(36.143MPa)和断裂伸长率(10.88%).并且在100Hz下它相比于其它含量的杂化薄膜,具有最小的介电常数(6.76)、介电损耗(0.01)和电导率(3.94×10-12S·m-1).  相似文献   

18.
通过对微波等离子体化学气相沉积装置中沉积的金刚石薄膜形貌与质量的检测研究了向甲烷/氢气等离子体中同时添加氮气/氧气对薄膜沉积的影响,获得了包括微米级和纳米级的多种薄膜;采用扫描电子显微镜、拉曼光谱以及X射线扫描对薄膜进行了表征,结果表明:只引入少量氧气后生成了111取向的较大粒度金刚石薄膜,而只引入少量氮气时生成了110取向的纳米级金刚石薄膜;当引入总量一定的氮氧混合气体时,根据氮气与氧气的引入量,所获得的薄膜从微米级多晶金刚石膜延伸至纳米级金刚石薄膜,其晶面组成从混合111与110取向过渡到100取向再过渡到110取向,氧气浓度较高时样品表现为大粒度成膜,随氮气浓度增加晶粒迅速减小,氮气浓度较高时所得样品则是标准的纳米膜;氮气和氧气的引入明显地影响着薄膜的不同粒径、不同微观结构和形貌的改变,表明通过调整气体引入量可以指向性获得具有特定微观结构的薄膜.  相似文献   

19.
在通氩气和不同比率氧氩混合气体的条件下,利用射频磁控溅射法在玻璃衬底上制备铝(Al)掺杂氧化锌(AZO)薄膜(溅射功率为180W,衬底温度为300℃),并对部分薄膜样品进行400℃或500℃退火处理.采用X射线衍射仪(XRD)、原子力显微镜(AFM)和分光光度计对薄膜的结构、表面形貌和光学性能进行测试研究.结果表明,制备的所有薄膜均呈现(002)晶面择优生长;与氩气溅射相比,当采用氧氩混合气体溅射时,生长的AZO薄膜晶粒尺寸显著增大;退火处理使2类薄膜的表面粗糙度都明显减小,晶粒也有所增大(7%~13%).其中,在氧氩比为1∶2的混合气体中制备的薄膜,经过500℃退火后,晶粒尺寸最大(39.4nm),薄膜表面更平整致密,在可见光区平均透过率接近最大(89.3%).  相似文献   

20.
以甲烷、氢气和氧气为反应气体,分别在镜面抛光的单晶硅片和石英玻璃基片上制备了类金刚石薄膜,并用扫描电子显微镜、激光拉曼光谱和傅立叶红外透射光谱仪等测试方法对薄膜的表面形貌、质量和光学性能进行了表征;通过对类金刚石(DLC)薄膜制备过程中碳源浓度、基片温度等参数的研究,掌握了工艺参数对薄膜性能的影响规律,并在此基础上成功地对薄膜的沉积工艺进行了优化.结果表明,当反应气体中的流量配比为甲烷∶氢气∶氧气=10∶100∶1,腔体压力和基片温度分别为0.5 kPa和400℃,制备出的DLC薄膜表面光滑平整,薄膜中的纳米金刚石特征峰明显,在石英玻璃上沉积的DLC薄膜在3 000~4 000 cm-1波数区间透光率超过80%,达到了光学应用要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号