首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 200 毫秒
1.
管道埋深对管道周围土壤温度场及管道的热力特性有重要的影响,埋深不同,相对应的管道周围土壤的温度场也不同。对埋深不同的埋地管道周围土壤温度场进行了数值模拟,并选用水热耦合模型和传热模型进行了计算。对通过两种模型得到的计算结果进行了分析。结果表明,埋深对埋地管道周围土壤温度场有一定的影响,水分迁移和冰水相变对埋地管道的温度分布也有一定的影响;埋深不同时,水分迁移和冰水相变对土壤温度场的影响也不同,管道埋深越浅,通过两种模型计算得到的相同点处的温度相差越大。为了得到更接近于实际的计算结果,应该考虑水分迁移和冰水相变,计算时应考虑水热耦合问题。  相似文献   

2.
埋地管道周围土壤水热耦合温度场的数值模拟   总被引:12,自引:4,他引:8  
冻土区埋地管道遇到的最常见问题是冻害破坏, 研究埋地管道发生冻害及其科学有效的防止方法,首先应预测埋地管道周围冻土冻融过程中温度场的变化及温度场与水分场的变化关系。用有限单元法对埋地管道周围温度场进行了数值模拟, 计算中考虑了土壤中水分迁移和相变对温度的影响, 给出了不同时刻埋地管道周围温度分布。对计算结果分析表明, 水分迁移和相变对土壤的传热有一定影响.  相似文献   

3.
我国具有广阔的季节冻土和多年冻土区, 穿越冻土区的埋地管道不仅受到地形地貌的影响, 而且冻 害破坏也是存在的主要问题。因冻融滑坡而产生的地质灾害是冻土区埋地管道较为常见的安全问题, 当温度高于 冻土融点时, 冻土会发生融化和沉积。斜坡带埋地管道的受力较为复杂, 因此建立有限元力学模型, 对不同斜坡角 度和不同融沉长度下的埋地管道的应力进行了数值计算与分析。通过数值计算与分析, 得到了埋地管道在冻土区 斜坡带因土壤发生融沉而产生的V o nM i s e s应力的分布规律。对斜坡带埋地管道进行应力模拟分析, 可很好地反映 应力的变化情况, 为冻土区管道的施工建设提供理论依据。  相似文献   

4.
冻融循环是冻土区埋地管道主要的安全隐患,它不仅给管道带来额外的应力,而且会改变地形结构特殊区域原有的地质特性,在特定的条件下造成地质灾害的发生。系统研究了因冻土融化而产生的冻融滑坡给管道应力带来的影响,而且分析了不同位置的轴向滑坡对管道应力的影响。通过模拟分析可知,不同位移的轴向滑坡对管道应力产生的影响差异很大;改变滑坡的位置,对管道的应力也会产生较大的影响。对受冻融滑坡影响的管道进行的模拟分析结果,可很好地反映应力变化情况,可为冻土区埋地管道的施工建设提供理论依据。  相似文献   

5.
采用焓模型,建立含相变的冻土路基温度场,利用非线性有限元方法对隔热板路基温度场进行数值模拟,并结合考虑近期及远期冻土保护效果,采用冻土年最大融深及路基内融土核高度两个评价指标综合分析了路基高度、路基施工季节等因素对隔热板最佳埋深的影响.有限元计算表明,当施工季节向冷季推迟3个月时,隔热板的冻土保护效果显著增强,路基在运营20年内无融土核出现.在确定隔热板最佳埋深时需综合考虑施工季节、路基高度等因素的影响,若路基较低,宜浅埋,路基高度较高,暖季施工宜中埋,冷季施工宜浅埋.  相似文献   

6.
由于冻土的性质与结构复杂,对温度的影响较为敏感,因此,冻土区埋地管道极容易受到冻土变化的 影响。冻融循环对冻土区埋地管道的安全有很大的影响,对地形结构特殊的区域,冻融循环会改变原有的地质特 性,在特定的条件下造成地质灾害的发生。研究了由于冻土融化沉积产生的横向冻融滑坡给管道带来的应力影响, 并对不同位置的横向滑坡及对管道的影响程度进行了分析。通过研究发现,不同位置的横向滑坡对管道产生的应 力影响差异很大。对受横向冻融滑坡影响的管道进行模拟分析,可很好地反映应力的变化情况,为冻土区埋地管道 的施工建设提供理论依据。  相似文献   

7.
管道埋深对稳定运行热油管道热力特性的影响   总被引:4,自引:0,他引:4  
基于管道不同埋深对热油管道热力特性的影响,首次提出了对不同埋深管段采用不同热影响半径的思想,利用有限元法求解了热油管道稳态运行时的热微分方程,并编制了相应的计算程序,从而对管道稳态运行时的轴向和横向温度场进行了更为准确的求解,并详细分析了管道埋深在不同季节对管道热力特性的影响。结果表明,在冬季,如果计算埋深比实际埋深大,将会使温度场计算结果偏高,从而影响管道的安全运行;反之,如果埋深值取得偏小,又会使温度场计算结果偏低,从而给管道运行带来一定的经济损失。而在夏季,管道埋深造成的影响正好相反。  相似文献   

8.
不同埋深热油管道数值计算   总被引:1,自引:0,他引:1  
在热油管道的输送过程中,管道埋深对其周围土壤温度场有很大影响,而且管道附加的保温层对管道自身的热力特性也产生影响。研究了不同温度、不同埋深下附加保温层的热油管道与其周围土壤温度场的关系。热油管道埋地深度越深,受地表温度影响越小。结果表明,在夏季,管道埋地越深,输油前土壤温度越低;稳定输油之后,埋地较深的管道其外壁温度比埋地较浅的管道低;在冬季,管道埋地越深,输油前土壤温度越高;稳定输油之后,埋地较深的管道其外壁温度反而比埋地较浅的管道高。因此,保温层应选取经济厚度,以期达到优化管道输送油品的温度、降低能耗、提高经济效益的目的。  相似文献   

9.
针对武汉市区内常见直埋球墨铸铁管道,设计实施邻近预埋管道的全尺寸爆破实验. 结合有限元数值计算方法,考虑管道不同埋深,研究爆破地震作用下粉质黏土地层内直埋管道动力响应. 研究结果表明,管道和地表峰值振速(PPVs)随爆源与管道距离的减小而增大,在管道正下方爆破为最危险工况. 管道中心截面为危险截面,危险截面PPVs以管腰和管底较大,动态应变以轴向拉伸应变为主,环向应变次之,峰值有效应力以底部单元最大,管道肩部最小. 管道不同埋置深度和PPVs具有比例关系,通过实测地表振速与管道有效应力关系可以预测管道截面爆破峰值有效应力,计算关系式可以为岩土爆破施工中邻近管道的安全性评价提供计算方法.  相似文献   

10.
埋地热油管道启输过程土壤温度场三维数值模拟   总被引:6,自引:4,他引:2  
在考虑气候条件和启输温度变化的情况下,用有限单元法对管道周围土壤温度场进行了三维数值计算,得到了不同时刻的土壤温度场分布情况。同时,对不同温度热水预热时的埋地热油管道启输过程的土壤温度场进行了对比,结果表明,虽然提高预热介质的温度可以达到更好的预热效果,但过多提高预热介质的温度,并不能得到最佳的预热效果。  相似文献   

11.
针对高温蒸汽在埋地蒸汽管线中输送会造成热量损失最终导致能源浪费的问题,分析了影响热损失的几个因素,建立了蒸汽管线的物理模型和数学模型,模拟了不同蒸汽温度、不同埋地深度、不同绝热层厚度下的温度场分布,并对不同条件下管线及周边土壤的温度分布规律进行了计算分析。研究结果表明,埋地蒸汽管线的热损失随蒸汽温度、埋地深度、绝热层厚度的变化而变化,其中绝热层厚度对埋地管线的热损失影响最大,绝热层厚度从40mm增加到80mm时,单位长度管线热损失下降110.591kW/m,且对热损失的影响逐渐变小。  相似文献   

12.
当冻土周围温度发生变化时,土体含水率会随之改变,而此时冻土的内摩擦角、内聚力和重度都会相 应地发生变化。对处在斜坡段的埋地管道,随着冻土的融化,土体产生沿斜坡方向向下的摩擦力,使管道受到额外 的拉应力。为了正确认识冻土参数对管道应力的影响,为确定科学有效的管道防害方法提供依据,针对发生冻融滑 坡时土体各参数对管道应力的影响进行了模拟计算及分析。结果表明,当发生冻融滑坡时,随着土体内聚力与冻土 重度的增加,管道所受应力变大;随着土体内摩擦角的增加,管道所受应力减小;冻土内摩擦角对管道应力的影响 大,冻土重度次之,冻土内聚力对管道应力的影响最小。  相似文献   

13.
湿陷性黄土浸水后易产生自重湿陷,黄土的强度会大大降低,并对沿途埋地管道的安全运行产生威胁。为了研究埋地管道在湿陷性黄土地区的稳定性,基于有限元方法,分析了外径和壁厚不同的管道在湿陷时产生的位移、应力和应变;采用特征值屈曲理论,研究了一定条件下埋地管道在黄土灾害中所能承受的极限长度。结果表明,增大管道外径和壁厚、减少管道在黄土中的埋深,可以有效降低管道在湿陷性黄土中的位移;加大管道外径与壁厚,也可有效避免管道出现局部应力过高的现象;管道的最大应力与应变均发生在湿陷区中心和两侧固支端位置。经特征值屈曲理论分析可知,管道在土体产生自重湿陷时的湿陷区极限长度约为65 m,提高管道外径和壁厚可增强埋地管道在黄土遇水湿陷时的抗屈曲能力。  相似文献   

14.
给出了天然气管道泄漏几何区域图形,建立了天然气泄漏控制方程,基于控制体积原理和多孔介质理论,利用计算流体力学软件对埋地天然气管道泄漏过程进行了数值模拟。通过模拟,得到了天然气在土壤和空气中泄漏浓度分布,并分析了风速对天然气组分的扩散影响规律,确定了安全区域,为天然气管道泄漏应急救援和安全管理提供了理论依据。  相似文献   

15.
埋地热油管线间歇输送技术研究   总被引:3,自引:2,他引:1  
原油管道低输量情况普遍存在。当管道输量低于允许最低输量时,如能采用间歇输送工艺则可以有效解决这一难题。在间歇输送过程中如果停输时间过长,管道内原油温度降低到一定值后,就会给管道的再启动带来极大的困难,甚至造成凝管事故。根据铁岭-大连管道的热力及水力特征建立了埋地管道间歇输送温降数学模型、再启动温升数学模型和再启动压力数学模型。采用有限差分方法,把热传导偏微分方程转化为线性方程组后,用迭代法求解。以鞍山到大石桥、大石桥到熊岳两段管道为例进行停输和再启动过程模拟计算。结果表明,当俄油输量为23 300 t/d,出站温度为45 ℃时,该管道在冬季的间歇输送方案是停输8天后再启动输油2天,可保证管道安全过冬。该方案成功地在铁岭-大连管道得到应用。  相似文献   

16.
建立跨断层埋地管道在土壤冻融作用下的有限元模型,进行走滑断层错动下的热力耦合分析,研究并获得钢管道应变发展规律。研究发现不同地面和介质温度时的土体刚度分布不同,引起断层错动时管土相互作用不同,从而引起不同的管道应变发展规律。通过真实温度场和简化温度场时的力场数值模拟结果对比分析,发现对应两种温度场的应变规律差别较大,且管道发生局部屈曲明显早于拉伸破坏。建议对于跨冻土断层埋地管道,应考虑地表温度和管内流体温度,通过模拟得到真实温度场,进行热力耦合分析,得到管道断层错动应变后进行抗震设计。  相似文献   

17.
埋地热油管道停输轴向温降规律研究   总被引:6,自引:0,他引:6  
热油管道的计划检修和事故抢修都在管线停输情况下进行,停输后,管内存油油温不断下降,存油粘度随油温下降而增大,当粘度增大到一定值后,会给管道输送再启动带来极大的困难,甚至会造成凝管事故.为了确保安全经济地输油,必须研究管路停输后的温降情况,以便确定允许停输时间.根据热油管道停输后油品和管道周围土壤的热力变化工况,提出了传热定解问题并对其进行数学求解,得出了管道中油品轴向温度随时间和距离变化的解析解,并编制了相应的软件,从而为更合理地确定在不同季节安全停输时间提供了科学计算依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号