首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hydrophobic and magnetic plastic particles having a contact angle of around 83° on flotation performance was evaluated using coal particles of varying degrees of floatability. The magnetic plastic material were recovered by a low intensity magnetic separator and recycled back to the flotation feed for re-use. Flotation rate tests conducted on coal using a conventional cell proved that combustible recovery and flotation rate were significantly enhanced with the addition of the plastic particles, especially for difficult-to-float coals, which was corroborated by flotation column tests. Carrying capacity and particle size-by-size flotation tests further showed that the magnetic plastic particles preferentially increased the recovery of coarse particles by as much as 35 absolute percentage points due to froth stabilization which reduced the selective detachment of coarse and/or weakly hydrophobic particles. The enhanced flotation recovery was attributed to the influence on liquid drainage rate in the froth zone, froth stability, bubble coalescence and flotation rates.  相似文献   

2.
《Minerals Engineering》2003,16(10):975-982
The improved selectivity between particles of varying degrees of hydrophobicity in flotation froths has been well documented in literature, especially in the deep froths utilized in flotation columns. The phenomenon is believed to be due to the selective detachment process whereby the least hydrophobic particles are released from the bubble surface upon bubble coalescence. To quantify the selective detachment process, column flotation experiments were performed under various operating conditions that provided varying amounts of reflux between the froth and collection zones. Entrainment was eliminated by the use of relatively coarse 250 × 75 micron material. The flotation column incorporated the ability to provide instantaneous stoppage of the process streams and separation between the collection and froth zones after ensuring steady-state operation of the column. The samples collected from the two zones and process streams were evaluated to quantify the flotation rate distribution of the particles comprising each sample. The flotation rate was used as an indicator of the degree of hydrophobicity and thus a relative measure of the binding force between the particle and bubble in the froth zone. The flotation rate data was used as input into well known flotation models to obtain the froth zone recovery rate and the quantity of material that refluxes between the collection and froth zones.  相似文献   

3.
《Minerals Engineering》1999,12(10):1163-1176
This paper presents the results of an investigation in which the new JKMRC Flotation Cell was used to determine the collection zone rate constant and froth zone recovery of a copper rougher ore simultaneously.The determination of these two parameters has been based on the straight line relationship that exists between the overall flotation rate constant and the froth depth [1].Experimental work was conducted using a copper rougher ore with a P80 of 200 μm. Operating variables such as air flow rate, impeller speed, feed percent solids, collector and frother dose, and wash water flow rate were investigated. Analysis for copper and iron minerals (chalcopyrite and pyrite, respectively) was carried out.The results indicate that the collection zone rate constant of both copper and iron minerals increased with increasing air flow. Froth zone recovery, on the other hand, decreased as air flow was increased, possibly as a result of increased detachment of particles from bubbles in the froth. Increasing the impeller speed also increased collection zone rate constant and decreased the froth zone recovery of both minerals.Experiments at different wash water flow rates have showed that events occurring in the froth zone do not affect the kinetics of the pulp zone. Moreover, and interestingly, the froth recovery of attached particles (wash water reduced entrainment to a minimum) was non-selective. The froth recovery curves for chalcopyrite and pyrite followed each other very closely in every instance studied.The work has proved that it is possible to measure both the collection zone rate constant and froth zone recovery simultaneously and continuously in a mechanical flotation environment. The results obtained to date are interesting and the work is continuing.  相似文献   

4.
《Minerals Engineering》2006,19(6-8):774-783
This paper deals with two separate case studies investigating the froth phase performance and characterisation of two industrial rougher/scavenger flotation circuits. Froth phase performance was quantified using a mass balance approach to estimate froth zone recovery. Measured characteristics of the froth phase included frother solution concentration determined by gas chromatography, and the time taken for an equilibrium froth sample to decay to one-half of its original froth height. The latter measurement is referred to as the ‘froth half-life’ and is strongly linked to froth stability. Special methods and techniques developed to preserve frother in solution and to measure froth half-life are briefly described. The frother type in the first case study was a mixture of straight and branched alcohols, whilst the frother type in the second case study was a mixture of alcohols, aldehydes and triethoxybutane. The first case study focussed on a flotation circuit treating a low grade ore containing only a small fraction of floatable copper sulphide minerals, while the second case study focussed on a flotation circuit treating a higher grade complex sulphide ore containing significant quantities of chalcopyrite, galena, sphalerite and pyrite.It was found that froth zone recovery of valuable mineral generally decreased down-the-bank of the two industrial rougher/scavenger circuits. Moreover, decreases in froth zone recovery significantly limit the overall cell recovery of valuable mineral achievable from the plant scavenger cells. However, the decrease in froth zone recovery could not be linked to the removal of frother from the pulp solution to the concentrate product in the preceding rougher flotation stages. Measurements of residual frother in solution suggested that, approximately, only 5–10% of the added frother was removed into the rougher/scavenger concentrate, with the remainder appearing in the scavenger tailings. This finding suggested there was apparently adequate frother in solution in the scavenger stages.There was, however, a correlation to the froth half-life, with the froth half-life also generally decreasing down-the-bank. A simple, empirical model, based on the froth half-life and froth residence time of gas, is proposed here to predict froth zone recovery. Further, it is proposed that the froth stability, as measured by the froth half-life, is strongly linked to the presence of particles in the froth, with poorly mineralised scavenger froth characterised by a short half-life and, potentially, a low froth zone recovery. The importance of particles on froth stability was confirmed in separately conducted laboratory experiments. These experiments also demonstrated the wide variation in froth stability behaviour between different frother types.  相似文献   

5.
The effect of the use of ultrasound in the froth phase on the flotation performance has been investigated in relation to the flotation rate of a complex sulphide ore. A series of kinetic flotation tests with and without ultrasound were conducted in a flotation machine with a 2-L cell, in which an ultrasonic probe is located in the froth zone. The results indicate that there is a considerable effect of ultrasound on separation selectivity and efficiency in the flotation of a complex sulphide ore at intermediate and high level airflow rates whereas, no significant differences in the separation performance were obtained from the flotation with and without ultrasound at low airflow rates. In addition, the results of the size-by-size analysis show that a much better cleaning action in the froth was promoted for coarse particles rather than fine particles as a result of the use of ultrasound. As a result of increase in the bubble coalescence, it was found that the use of ultrasound in the froth is more effective at shallow froths. Therefore, either effective pulp volume can be increased with a negligible loss of flotation performance or the pulp density can be decreased to obtain better product quality with the use of ultrasound in shallow froths.  相似文献   

6.
In batch flotation tests conducted on ores from the Merensky reef, changes in froth stability invariably occur with variations in the reagent suite. The main reagents are collectors (primary and secondary), activators, depressants and frothers. Since the particles entering and leaving the froth in a batch flotation system are continuously changing, the stability of the froth can vary. Under these conditions the simplest measure of froth stability is the measure of water recovery at a fixed froth height. The batch flotation system developed at UCT allows for the separation of gangue which is entrained relative to gangue which is floated. It has been found that the presence of naturally floatable gangue (NFG) leads to froth stabilisation, whereas the presence of hydrophobic sulfide minerals may lead to destabilisation of the froth depending on the hydrophobicity (contact angle) of the sulfide minerals. This can vary with ore type since particle shape and amount of particles present can influence the extent of destabilisation. At low depressant dosages sodium isobutyl xanthate (SIBX) always results in lower froth stability than sodium ethyl xanthate (SEX). The frothing nature of dithiophosphate leads to increased froth stability and the addition of copper sulfate results in destabilised froths. Increasing depressant dosage reduces the stabilising influence of NFG and the depressant type (guar gum or CMC) also affects froth stability. Frother can be used in an attempt to overcome the destabilising effects of high depressant dosage. This work examines the effect of variations in the reagent suite and uses water recovered at a fixed froth height as an indication of froth stability in order to analyse these effects on the recovery of sulfide minerals, floatable gangue and entrained gangue.  相似文献   

7.
The froth phase serves an important role in upgrading the final concentrate in flotation. At present, the techniques that are used in the mineral industry to determine the effect of froth phase on the metallurgical performance of plant scale flotation cells have limitations.The aim of this paper is to investigate the performance of the froth in an industrial flotation cell. A unique device has been developed which is able to decouple the froth zone from the pulp zone. The device consists of two concentric tubes. The inner tube acts as a dropback collection chamber or catcher. The particles that return from the froth phase fall directly into the catcher and are collected as froth dropback. This technique is capable of measuring plant scale flotation cell froth recovery as well as providing valuable information on froth dropback particles.The froth recovery measurements were carried out in a rougher bank of a copper concentrator treating sulphide minerals. The dropback device is designed so that it can be immersed into an industrial size flotation cell and plant froth recovery measurements can be taken at any given location. During the experiments, the bubbles laden with valuable mineral particles entered the device from the flotation cell, subsequently rising to form a froth layer at the top of the device. The particles that detached or drained from the froth zone were collected in the dropback collection chamber whereas the concentrate sample was collected through a launder. By sizing and chemical analysis of the concentrate and dropback samples, the froth recovery was estimated on the basis of the valuable component. The effect of air rate on the froth recovery was also investigated. Metallurgical grades of the froth dropback device samples for different particle size ranges were compared to those of the concentrator to better understand the froth dropback mechanism.  相似文献   

8.
Increasing the upper size limit of coarse particle flotation has been a long-standing challenge in the minerals processing industry. The HydroFloat separator, an air-assisted fluidised-bed separator, has been used in this study to float 250–1180 μm sphalerite particles in batch flotation tests and compared to results achieved utilizing a laboratory-scale conventional Denver cell. The quiescent environment within the HydroFloat cell significantly reduces the turbulent energy dissipation within the collection zone, hence decreasing the detachment of particles from bubbles during flotation. Three operating parameters including bed-level, superficial water and gas rates have been studied, and their effect on the flotation of coarse sphalerite particles is reported. It is shown that coarse sphalerite recovery increases with increasing bed-level, superficial water and gas flow rates. However, there are thresholds for each operating parameter above which recovery starts to decrease. A comparison of recovery with a conventional Denver flotation cell indicates that the HydroFloat separator vastly outperforms the conventional flotation machine for the very coarse particles (+425 μm), and this is mainly attributable to the absence of turbulence and the minimization of a froth zone, both of which are detrimental to coarse particle flotation.  相似文献   

9.
Recent research progress in hard rock mineral flotation shows that froth stability can be represented by air recovery, which is defined as the fraction of air entering a flotation cell that overflows the weir in unburst bubbles, and that air recovery has strong correlation with the separation performance of mineral flotation. Yet no experimental work on air recovery has been devoted to coal flotation. This paper studies air recovery in coal flotation and examines the links between air recovery, froth stability and coal flotation performance. A series of experiments were conducted using a laboratory-scale mechanical flotation cell at various methyl isobutyl carbinol (MIBC) concentrations and aeration rates. It was found that air recovery has a strong correlation with dynamic froth stability determined by measuring the maximum froth height in a non-overflowing froth column. At a fixed aeration rate (hydrodynamic condition) and various MIBC concentrations, a strong correlation between air recovery and coal flotation performance was also observed.  相似文献   

10.
粗颗粒浮选技术提高了矿物颗粒可浮选粒度上限,并且可以减少能量的消耗,这对于预选抛尾和粗粒尾矿再选,特别是对易于过粉碎的矿物浮选具有重大意义.近年来已有许多粗粒浮选技术应用于煤炭、磷酸盐矿等的选别.从分析粗颗粒矿物的性质及其难浮选的问题出发,提出了改善粗颗粒浮选的方法,总结了泡沫中浮选法、闪速浮选法、流化床浮选法等浮选方...  相似文献   

11.
《Minerals Engineering》2006,19(6-8):619-626
In recent years, computational fluid dynamic (CFD) modelling of mechanically stirred flotation cells has been used to study the complexity of the flow within the cells. In CFD modelling, the flotation cell is discretized into individual finite volumes where local values of flow properties are calculated. The flotation effect is studied as three sub-processes including collision, attachment and detachment. In the present work, these sub-processes are modelled in a laboratory flotation cell. The flotation kinetics involving a population balance for particles in a semi-batch process has been developed.From turbulent collision models, the local rates of bubble–particle encounters have been estimated from the local turbulent velocities. The probabilities of collision, adhesion and stabilization have been calculated at each location in the flotation cell. The net rate of attachment, after accounting for detachments, has been used in the kinetic model involving transient CFD simulations with removal of bubble–particle aggregates to the froth layer.Comparison of the predicted fraction of particles remaining in the cell and the fraction of free particles to the total number of particles remaining in the cell indicates that the particle recovery rate to the pulp–froth interface is much slower than the net attachment rates. For the case studied, the results indicate that the bubbles are loaded with particles quite quickly, and that the bubble surface area flux is the limiting factor in the recovery rate at the froth interface. This explains why the relationship between flotation rate and bubble surface area flux is generally used as a criterion for designing flotation cells. The predicted flotation rate constants also indicate that fine and large particles do not float as well as intermediate sized particles of 120–240 μm range. This is consistent with the flotation recovery generally observed in flotation practice. The magnitude of the flotation rate constants obtained by CFD modelling indicates that transport rates of the bubble–particle aggregates to the froth layer contribute quite significantly to the overall flotation rate and this is likely to be the case especially in plant-scale equipment.  相似文献   

12.
《Minerals Engineering》2006,19(6-8):841-851
A technique for determining the recovery of attached particles across the froth phase in flotation that relies on measuring the rate at which bubble–particle aggregates enter the froth is used to investigate the selectivity of attached particles across the froth phase. Combining these measurements with those of other techniques for determining the froth recovery of attached particles provides an insight into the different sub-processes of particle rejection in the froth phase. The results of experiments conducted in a 3 m3 Outokumpu tank cell show that the detachment of particles from aggregates in the froth phase occurs largely at the pulp–froth interface. In particular it is shown that the pulp–froth interface selectively detaches particles from aggregates according to their physical attributes.  相似文献   

13.
The flotation process consists of two distinct phases: the pulp and froth phase. One of the main roles of the froth phase is to create a suitable environment for the separation of floatable, valuable minerals from non-selectively recovered, entrained gangue minerals. As a result the froth phase plays a significant role in the metallurgical performance of industrial flotation cells. Froth stability is important for the recovery of valuable minerals. However, a stable froth may contribute to increased entrainment and, consequently, a lower grade.This study compares the effect of frother mixtures with that of their single component frothers on the froth stability, froth recovery and entrainment of a platinum-bearing UG2 ore using polyglycol and alcohol frothers. The study showed that frother mixtures resulted in a greater froth stability than either of their component frothers. The increased froth stability was reflected in increased froth recoveries and greater overall recoveries. However, the important aspect in the use of frother blends was that they altered the froth structure and resulted in a lower degree of entrainment. This, together with the increased recovery, resulted in higher grades of valuable mineral recovered to the concentrate when using the frother mixtures.  相似文献   

14.
Solid particles have significant effect on flotation froth. In this research, the effects of coal particles of different size and hydrophobicity on froth stability and flotation performance were studied. The froth stability was measured in both the froth formation and froth decay processes by maximum froth height, froth half-life time and water recovery. The results show that fine particles of moderate hydrophobicity contributed most to maximum froth height in the froth formation process and were most favorable for flotation. Fine hydrophilic particles stabilized the froth in the froth formation process but the froth half-life time was very short due to the high water solid ratio. High hydrophobic particles of both fine and coarse size fractions greatly increased the froth half-life time in the froth decay process. But the froths were very rigid and the maximum froth heights were very low. The presence of fine hydrophobic particles was very unfavorable for the recovery of coarse particles.  相似文献   

15.
《Minerals Engineering》1999,12(7):721-731
Flotation processes occurring in the bulk and froth phases have a characteristic influence on the structural features and dynamics of the flotation froth. It is recognized that the structure and texture of a mineral froth is a good indicator of flotation separation performance. The surface froth feature and dynamics are presented by three features extracted from the digitized images of the froths, i.e. SNE, a rough indication of the average bubble size of the froth, froth stability and the average grey level of the froth, an indication of mineral loading. Particle size is an important parameter in flotation operation. Nowadays, particle size is often measured and controlled in flotation concentrators. In this study the dependence of the froth structures on the particle size variation was investigated on the batch flotation of a sulfide ore from the Merensky reef in South Africa, and the size by size recovery curves were studied as well. In general medium particles produced bubbles smaller than those observed in the presence of fine and coarse particles, and the recovery rates were larger. Entrainment was a contributory mechanism to the recovery of fine particles. The fluctuation of flotation indices on the particle size change can be diagnosed and predicted by the froth structures change with a high degree of accuracy.  相似文献   

16.
《Minerals Engineering》2003,16(11):1055-1059
Computational fluid dynamic (CFD) modelling of a Denver-type flotation cell has been performed. Bubble–particle collision rates in different parts of the cell have been calculated from the local turbulent velocities, and the size and number concentrations of bubbles and particles obtained from CFD modelling. The probability of collision due to streamline effect of fine particles moving around the bubble has also been estimated. The local attachment rate based on the collision rate and collision probability is then calculated and found to decrease as particle size decreases. This is consistent with the decrease in flotation recovery of fine particles as observed in flotation practice. The magnitudes of the collection rate constants obtained from CFD modelling indicate that transport rates of the bubble–particle aggregates to the froth layer may contribute quite significantly to the overall flotation rate in plant-scale equipment.  相似文献   

17.
根据振动分散原理,当矿化气泡聚合体通过振荡区域时将被分散为单泡上浮,被夹带的亲水性矿粒失去依托,在振动惯性力作用下落入矿浆,从而减轻夹带污染.此外,当波动的上升流束进入振荡区域时,通过动量交换,上升流束将迅速被水平振荡的主流“同化”为水平流动,从而稳定泡沫层,提高了浮选选择性.从浮选热力学和流体动力学角度讨论了振荡对矿粒脱附的影响和不同性质矿粒脱附的临界干扰强度.理论分析和计算表明,当振动强度为4g时,非选择性附着的亲水性矿粒将脱落,而浮选的疏水性煤粒不受影响.  相似文献   

18.
粗细粒级差异化给矿对浮选柱选别性能的影响   总被引:1,自引:1,他引:0  
粗细粒级矿物具有不同的浮选特性,浮选柱主要应用于精选作业的细粒级矿物分选,对粗颗粒矿物回收率较低,限制了浮选柱的应用。在泡沫层分选理论的基础上,以纯石英矿物(纯度大于99%)为代表矿样,将其分成150~280μm和-15μm粗细粒级两个组分,采用Ф100 mm×2 000 mm浮选柱开展试验考察粗细粒级差异化给矿对选别性能的影响。在一个试验中将粗细粒级矿物混合给入浮选柱泡沫层之下进行常规浮选,在另一个试验中将粗细粒级矿物差异化给入浮选柱泡沫层之上和泡沫层以下分别进行泡沫层分选和常规浮选。试验对比结果表明,粗细粒级差异化给矿提高了浮选柱精矿回收率,对粗颗粒矿物回收效果提升更为显著。  相似文献   

19.
This paper describes the effect of the partial concentrate (rougher floated product) recirculation to rougher flotation feed, here named concentrate recirculation flotation – CRF, at laboratory scale. The main parameters used to evaluate this alternative approach were flotation rate and recovery of fine (“F” 40–13 μm) and ultrafine (“UF” <13 μm) copper sulphide particles. Also, the comparative effect of high intensity conditioning (HIC), as a pre-flotation stage for the rougher flotation, was studied alone or combined with CRF. Results were evaluated through separation parameters, grade-recovery and flotation rates, especially in the fine and ultrafine fractions, a very old problem of processing by flotation. Results showed that the floated concentrate recirculation enhanced the metallurgical recovery, grade and rate flotation of copper sulphides. The best results were obtained with concentrate recirculation flotation combined with high intensity conditioning (CRF–HIC). The kinetics rate values doubled, the Cu recovery increased 17%, the Cu grade increased 3.6% and the flotation rates were 2.4 times faster. These were accompanied by improving 32% the “true” flotation values equivalent to 2.4 times lower the amount of entrained copper particles. These results were explained and proved to proceed by particle aggregation (among others) occurring after HIC, assisted by the recycled floatable particles. This “artificial” increase in valuable mineral grade (by the CR) resulted in higher collision probability between hydrophobic particles acting as “seeds” or “carrier”.  相似文献   

20.
High energy costs required to smelt low grade concentrates could be alleviated by the production of high grade concentrates. Obtaining maximum PGM recovery by the use of high dosages of polysaccharide depressants may be problematic in that a significant decrease in the stability of the froth, particularly with CMC, results. These highly unstable froths may result in restricted mass pulls and decreased valuable mineral recovery. There are a number of ways of counteracting unstable froths, such as increasing airflow rate, reducing froth height or increasing frother dosage. Although necessary to maximise PGM recovery, all of these are likely to lead to increased water recovery and dilution of the concentrate by entrained material. This work examines the effect of increasing frother dosage on the recovery of sulphide minerals and floatable gangue from a Merensky ore at varying dosages of guar gum and CMC, as well as on the recovery of entrained gangue and its dependence on the physical nature of the flotation pulp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号