首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
针对石羊岭隧道浅埋卵石土层段围岩破碎、自稳能力差,在施工中易引起大变形、坍塌、地表沉陷等工程问题,对该浅埋段采用地表注浆加固处理后进行三台阶法施工。通过Midas/GTS软件对隧道浅埋卵石段地表注浆效果进行数值模拟。结果表明:地表注浆对卵石土层加固效果较好,可有效增强上部岩土体的力学参数,并大幅减小围岩变形。  相似文献   

2.
以深圳地铁12号线2期工程松岗站与既有6号线折返线北侧暗挖通道为研究背景,通过FLAC3D有限元数值模拟和理论分析的方法研究了新意法施工条件下不同海相地层围岩级别、隧道埋置深度、隧道洞径、隧道掌子面预加固强度对隧道掌子面失稳模式及围岩变形规律。当隧道掌子面不进行预加固时,掌子面挤出位移随着隧道埋置深度的增加而增加;围岩等级越大,掌子面挤出位移随隧道埋深的变化越明显;当围岩等级为VI6时,隧道埋深在5 m到45 m,掌子面均发生了失稳现象;当隧道埋深取5 m、洞径取5.8 m时,其他固定参数不变;随着围岩内摩擦角、黏聚力、掌子面预加固深度的增大,隧道掌子面挤出位移逐渐减小。  相似文献   

3.
为研究隧道开挖过程中浅埋软岩段塌方变形特征,对隧道地质情况进行有效辨识,结合隧道施工过程围岩监测数据,并依据地质雷达探测结果建立三维数值模型并进行数值分析。研究结果表明:在隧道开挖阶段,拱底与拱顶位置均出现明显塑性区,伴随掌子面逐渐靠近围岩破碎区域,塑性区范围逐渐扩大并向拱顶右上方及围岩内部转移,破碎区域应力水平较低且位移显著增大,围岩完整性大大降低;不良地质构造是隧道发生塌方大变形的主要原因,降雨和地表水的入渗劣化围岩力学性质加速了隧道灾害的发生。对于隧道五级围岩浅埋段施工,应加强监控量测分析并及时做出预警,对关键部位开展超前地质预报工作。研究结果可以指导隧道塌方灾害的防治,对于实现隧道信息化施工具有借鉴意义。  相似文献   

4.
浅埋偏压会对隧道围岩稳定和支护结构产生很大影响,开挖过程中极易发生垮塌。利用FLAC3D 程序对烟海高速公路解家河隧道穿越浅埋偏压洞段采用的施工过程进行仿真分析,得到解家河隧道在采用不同开挖工序时各阶段围岩及支护结构的变形和应力变化情况。结合现场监测断面的量测成果,经过数据整理和计算得到解家河隧道浅埋偏压洞段围岩及支护的受力特征,对隧道围岩稳定性进行分析判断。所得结论为解家河隧道顺利施工提供了可靠依据,可为具有类似地质、地形情况的隧道设计和施工提供技术参考。  相似文献   

5.
目的为更准确地预测浅埋盾构隧道引起的地表沉降,探求相应的沉降控制措施.方法基于均质半无限空间假定,将浅埋单孔盾构隧道二向非等压初始地应力场分解为均匀应力场和单向应力场。利用弹塑性力学的Lame公式和Kiersch公式及摩尔一库仑屈服准则,定义了弹塑性解的位移边界条件.将控制地表沉降两大措施成功地应用于北京地铁十号线浅埋盾构隧道地表沉降预测及控制.结果得出适合浅埋隧道地表沉降预测的弹塑性计算式,对弹塑性计算式的分析显示,隧道围岩的弹性模量E和黏聚力c越大,地表沉降越小;泊松比纵内摩擦角φ和膨胀角沙越大,地表沉降也越大.提出通过减少围岩扰动和提高围岩性质两种控制盾构隧道地表沉降的方法.结论研究成果能较好地应用于浅埋盾构隧道的地表沉降预测及控制.  相似文献   

6.
为了解决浅埋卵石土层隧道在施工中易出现的拱部掉块、局部失稳坍塌等工程问题,文中以青海省石羊岭隧道浅埋卵石土层段为工程背景,采用数值模拟的方法,研究了在超前小导管与地表注浆共同加固的情况下,不同的施工工法对该隧道的施工影响。结果表明:隧道围岩变形和结构所受拉应力均较小,双侧壁导坑法、CD法、CRD法和环形开挖预留核心土法均满足规范要求;从隧道围岩变形和最大拉应力数值模拟结果看,以上4种工法选用顺序为双侧壁导坑法、CD法、CRD法和环形开挖预留核心土法。以上结果对浅埋卵石土层隧道的施工具有指导作用。  相似文献   

7.
浅埋偏压小净距隧道结构特殊,两主洞同时施工时掌子面间距的合理选择对隧道稳定性尤为重要。以延崇高速公路头炮隧道为背景,通过ANSYS及FLAC3D软件建立隧道模型并进行数值模拟,采用了双侧壁导坑法先开挖深埋侧隧道的基础上,将规范中建议的小净距隧道施工时掌子面间距为1~2倍洞径的范围细化为4种不同工况,从隧道上部边坡位移、围岩位移及应力、初衬变形及应力、塑性区体积及锚杆受力等方面进行隧道稳定性的分析,最终得到两主洞掌子面保持2倍洞径时施工隧道稳定性最好,可为本工程及相似工程提供参考。  相似文献   

8.
隧道洞口大都会面临围岩破碎、浅埋和偏压等不良地质地形情况,现行规范只给出了偏压隧道衬砌荷载的计算方法。对于破碎围岩浅埋偏压隧道,根据现场情况及实测的衬砌受力和变形特征表明其与规范假定不同,不宜直接利用规范方法。通过工程实例分析及隧道三维数值分析结果提出了浅埋偏压隧道破碎围岩的破坏模式,即隧道开挖后深埋侧岩体滑塌下落挤压支护结构使其向外侧变形,从而外侧支护受到被动土压力。根据提出的破坏模式,将隧道开挖后围岩主要分为滑塌区和被动区,在此基础上利用极限平衡法推导出了衬砌荷载的计算公式。将计算得到的结果与现场实测值对比发现,对于围岩极其破碎且存在较严重偏压的浅埋隧道工程,提出的计算方法比采用规范方法更接近实际情况。  相似文献   

9.
采用FLAC5.0有限差分数值计算软件,对大断面、软岩、浅埋、偏压段隧道——包西铁路洞子岩隧道进行了三台阶、CRD和双侧壁导坑法的施工力学行为模拟分析,确定了采用双侧壁导坑法施工方案较优。分析了双侧壁导坑法不同施工工序时的围岩位移、支护内力、地表沉降以及塑性区的变化,得出了先开挖浅埋侧侧导坑后再开挖深埋侧侧导坑施工工序较优,且能有效地控制隧道围岩周边位移。数值模拟计算结果与现场监控量测值基本吻合。  相似文献   

10.
为了研究顺层岩质边坡下浅埋偏压隧道洞口段围岩破坏机理,以班丘隧道为例,根据现场地质调查结果,结合监测数据并利用数值模拟的方法分析了隧道洞口段围岩的破坏机制,提出了治理措施。结果表明:隧道浅埋侧拱肩处易出现拱形拉伸屈服塑性带,围岩易从此处开始破坏;围岩破坏是多种因素共同作用的结果,其中隧道偏压作用、岩体结构和降雨是造成隧道塌方和边坡滑坡的关键因素;隧道塌方模式为:掌子面上方岩体首先在重力作用下沿拱形屈服带形成拱形坍塌,然后在弯折内鼓作用下形成整体塌方,边坡滑坡的形式为坡体表面中风化页岩夹泥砂岩在坡体破坏的情况下发生顺层面的近平面滑移。  相似文献   

11.
断层破碎带隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
为研究断层破碎带隧道开挖过程中围岩稳定性以及拱顶沉降变化规律,对某断层破碎带隧道施工过程实施了监控,并采用回归分析的方法预测了该隧道两个断面的最终沉降.以该隧道为原型,基于有限元原理与岩体的弹塑性本构关系,采用ADINA软件,建立了有限元模型并进行了隧道开挖过程的模拟计算并预测了最终沉降.模拟计算结果表明:隧道开挖过程中最大垂直位移始终位于拱顶,上台阶左侧及上台阶右侧土体开挖后,拱顶下沉及周边收敛速率增大.现场监测结果与有限元模拟结果都证实了在断层破碎带围岩中采用预留核心土的隧道开挖方法能够有效控制拱顶沉降并预防塌方、冒顶等事故的发生等.研究成果可为隧道围岩稳定性研究提供理论依据,为隧道施工提供技术支持.  相似文献   

12.
为研究软弱破碎围岩浅埋连拱隧道施工过程中围岩变形特性,依托陕北某连拱隧道实际工程,通过现场布设监测仪器系统开展了拱顶沉降、围岩变形长期测试,获得了随施工过程拱顶沉降及围岩径向变形规律。结果表明:地表沉降近似于Peck沉降曲线,越靠近隧道中心地表沉降越大,最大沉降值产生于左线隧道开挖落底后,约为12.1 mm;拱顶沉降沿隧道纵向变化规律为:中导洞>正洞>左右侧导洞,中导洞表现为拱顶下沉,侧导洞则是水平收敛,上台阶施工因未临时仰拱封底而其收敛变形显著大于下台阶施工;随距隧道壁面距离增加,测点累计变形量逐渐减小,K21+970测试断面围岩松动区约2 m,因测线布置限制,K21+970测试断面松动区超过4 m。  相似文献   

13.
由于在山岭隧道的修建过程中,经常出现塌方事故,结合工程具体情况,从围岩层状分布、雨水侵蚀作用等方面,分析了隧道拱顶出现塌方的原因以及所采用加固措施的有效性;并对塌方周边断面加固前后围岩位移和支护结构应力进行了监测.监测结果表明,隧道拱顶塌方处加固措施行之有效,围岩变形及结构应力得到了较好控制.再利用FLAC3D软件对隧道塌方段进行数值模拟分析,得到的结果与现场监测结果基本一致,这表明加固措施对塌方的处理效果良好.  相似文献   

14.
在某高速公路大型堆积体围岩隧道施工中出现了拱顶塌方、超前支护砸毁、二衬开裂现象,致使施工方案多次变更,为此,采用大型室内饱和固结排水剪试验获得堆积体力学参数,结合现场监测和设计方案,利用三维数值模拟方法模拟了上下台阶法、三台阶分步开挖法及单侧壁导坑法等方案施工过程,对各方案进行了对比分析.结果表明,单侧壁导坑施工方案能有效减小拱顶位移和塑性区的发展,二衬受力也相对合理,因此较适合松散堆积体围岩隧道.分析结果可为同类型松散堆积体围岩隧道施工和方案设计提供参考.  相似文献   

15.
随着计算机的发展,数值模拟等技术在岩土领域的应用也越来越广泛。在进行埋深较大的地下洞室施工时,由于岩体的脆性特征,在高地应力作用下,洞室围岩容易出现劈裂破坏。因此,在深部岩体开挖过程中,对于围岩的劈裂破坏区域的预测格外重要。但是目前在现有的计算模型中,尚没有能够很好描述劈裂破坏特性的有限差分本构模型。本文从能量耗散原理出发,结合了横观各向同性模型,采用劈裂破坏准则对模型单元应力状态进行判断,利用FLACE3D的二次开发功能,在C++的编译环境下对模型进行如下改进,在原有模型中导入能量耗散理论和加卸载判据,得到新的自定义横观各向同性计算模型。该模型可以判断岩体所处的加卸载状态,并根据岩石状态使用不同的力学参数进行计算,并且还能够描述高地应力地区围岩产生竖向劈裂裂纹后,不同方向上围岩的不同力学性质。在此基础上对大岗山水电站大型地下洞室群开挖过程中的稳定性进行了计算。另一方面,在大岗山水电站大型地下洞室群开挖工程现场开展了洞周围岩劈裂破坏区的监测,采用钻孔电视、滑动测微计以及形变电阻率三种观测方法,测得了主厂房在进行各个开挖步开挖时,主厂房与主变室之间岩桥中围岩的位移以及劈裂破坏的情况。之后,将现场监测结果与不同本构模型的稳定性分析的计算结果进行对比。并得到以下结论:根据监测结果,大岗山水电站地下洞室群在进行开挖时,主厂房下游边墙围岩的劈裂区平均深度约为13~15m,考虑能量耗散的横观各向同性模型计算所得主厂房下游边墙劈裂区平均深度约为13.6m,二者十分接近;主厂房洞室在进行开挖施工后,随着与临空面的距离增加,围岩内部关键点的位移逐渐减小,在靠近主变室边墙附近,由于又形成了新的劈裂破坏区,因此围岩关键点位移又逐渐增加,考虑能量耗散的横观各向同性模型可以较好的反应围岩位移变化趋势,与监测曲线吻合度较高,而使用摩尔库伦模型以及横观各向同性模型计算得到的曲线则与监测曲线有较大区别;根据稳定性分析结果,主厂房下游边墙吊车梁位置关键点和主厂房洞中关键点开挖后洞壁出现的位移较大,其最大水平位移为29.46mm。主厂房拱顶在开挖的初期位移较大,拱顶竖直位移最大值为10.58mm。主变室拱顶竖直位移为10.06mm。结果表明,对比其他现有的有限差分模型,考虑能量耗散的横观各向同性模型计算结果与实际监测值最接近,可以反应不同开挖步时,围岩内部关键点位移的变化趋势。因此在高地应力地区地下洞室开挖时,可以使用该模型对洞周围岩的劈裂区进行计算与预测,以及在洞室开挖完成后对洞室围岩的稳定性进行分析,并参考计算结果对关键区域加强监测与管理,从而减小围岩劈裂破坏对洞室稳定性的影响。  相似文献   

16.
CRD法和台阶法施工对地铁隧道围岩变形的影响   总被引:1,自引:0,他引:1  
以西安地铁三号线太白南路-吉祥村暗挖区间隧道工程为依托,采用台阶法和交叉中隔墙法(CRD法)对隧道施工时的围岩变形进行实时监测,并对数据进行回归处理,应用FLAC3D软件对2种施工方法进行模拟分析,系统研究了2种开挖方法的隧道围岩变形规律。研究结果表明:采用C RD法能够有效控制拱顶沉降及水平收敛量,减小施工对围岩的扰动程度,对于保持软弱围岩的自持能力及稳定性有明显作用;在进行西安地铁隧道施工时,应采用台阶法实现隧道的快速开挖,而对于地层条件复杂或施工要求较高的区段建议选择C RD法进行施工,以便更好地控制围岩变形,保持围岩稳定性。  相似文献   

17.
为保证隧道施工期间围岩稳定和支护结构体系安全,本文结合超前地质预报与洞内、外地质观察,通过对某大断面软弱围岩公路隧道进行施工监控量测,分析处理地表下沉、拱顶下沉及周边收敛监测数据,研究其分布特征和变化规律。研究结果表明:该隧道施工工法和支护参数设计合理,围岩变形大都呈现“急剧增大—增速放缓—趋于稳定”趋势。当掌子面通过地表下沉监测断面10倍B时(B为隧道开挖宽度),地表下沉趋近最终稳定值。当掌子面通过洞内监测断面3倍B时,拱顶下沉和周边收敛变化量可达最终值的80%左右;6倍B时,变化基本趋于稳定,且上台阶收敛变化量明显大于下台阶。当后行左洞与先行右洞掌子面之间的间距大于5倍B时,能有效减小后行洞施工对先行洞的影响。本文研究结果可为类似条件下隧道工程的设计、施工和监测等提供参考。  相似文献   

18.
以鄂西山区隧道工程实例为依托,在溶洞调查与统计分析的基础上,从岩溶的溶洞体积、形态特征、溶腔充填物特征以及涌水通道类型等方面,对鄂西山区岩溶进行分类,得到鄂西山区岩溶发育特征,即溶腔体积不等、形态多样、溶腔充填物种类多、涌水通道复杂。采用数值模拟方法,分析不同位置的隐伏溶洞对隧道围岩的应力场、位移场影响情况,得出随隐伏岩溶位置变化,围岩应力分布有所不同;溶洞位置由隧道顶部向隧道底部变化过程中,隧道顶部围岩最大沉降由大到小依次为拱肩延长线、边墙一侧、拱脚延长线、拱顶上方、底板下方;随着溶洞位置的降低,隧道拱顶围岩水平最大收敛值由大到小依次为拱肩延长线、拱顶上方、边墙一侧、底板下方、拱脚延长线;随着溶洞位置的降低,隧道周边围岩沉降量由大到小均为拱顶、拱腰、拱脚、底板。基于岩溶类型特征、数值模拟围岩应力场、位移变化情况结果,提出岩溶区隧道揭露溶洞处治原则。以花果山隧道为例,开展溶洞处治原则与方法应用,提出针对性的处治方案。  相似文献   

19.
为探究不同大变形等级下层理角度对层状软岩隧道的影响,依托九绵高速全线软岩大变形隧道,通过岩石力学试验确定遍布节理模型参数,基于数值模拟,探究不同软岩大变形等级(轻微、中等、强烈)下层理角度对层状软岩大变形隧道围岩及支护体系受力变形的影响,并通过现场统计的层理角度与大变形情况对数值模拟结果进行验证。结果表明:1)层理小角度(0°、15°)与大角度(90°)围岩变形、支护结构受力变形较大,随着大变形等级的增大,层理角度引起的围岩支护变化效果越明显。2)随着层理角度的增大,围岩变形从拱底逐渐转移到右拱腰。围岩变形主要发生在隧道轮廓与层理面相切位置,其中拱底及左拱脚对层理角度变化较敏感。3)初支应力偏向及节理塑性区大致与层理弱面法向一致,随着层理角度的增大,节理的剪切塑性区由拱顶、拱底转移到左拱脚、右拱肩,最终偏移到左右拱腰上下位置;相比初支压应力,初支拉应力对层理角度更敏感,垂直节理增大了张拉剪切破坏塑性区贯通的风险,但剪切破坏塑性区半径反而有可能减小。4)现场的统计规律表现为小角度与大角度大变形等级较高,层理角度为60°以下时,岩层破坏发生在拱腰及拱肩处,随着层理角度的增大,有向拱肩发展的趋势,大角度层理时岩层破坏主要发生在拱腰处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号