首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用SAPO-11分子筛制备Pt/SAPO-11双功能加氢异构催化剂,以n-C8、n-C12和n-C16为模型化合物考察正构烷烃的加氢异构反应性能。结果表明,所制备的催化剂具有较好的异构化活性和选择性,其中单甲基支链异构产物收率和总异构产物收率分别可达60%和75%以上,是低凝柴油和高档润滑油基础油的理想组分。不同链长正构烷烃的异构化产物分布基本一致,但链长较长的正构烷烃更容易发生异构化反应和裂解反应,在保证相同转化率条件下长链烷烃裂解产物收率偏高且异构选择性降低。  相似文献   

2.
在连续流动固定床反应装置上,考察了温度、空速及添加水蒸汽对混合丁烯在SAPO-11分子筛催化剂上骨架异构化的影响。结合催化剂的NH3-TPD表征与Al2O3催化剂的评价结果,对催化剂酸性能和孔结构与丁烯骨架异构化进行了关联。结果表明,对于丁烯骨架异构,分子筛催化剂优于Al2O3催化剂,显示出催化剂孔结构的重要作用。SAPO-11分子筛酸量越小,转化率越低,酸量过小时催化剂基本没有活性,说明丁烯异构转化与表面酸量有密切关系。分子筛催化剂上,添加少量的水蒸汽使转化率有所降低,但异丁烯选择性明显增加。  相似文献   

3.

Abstract  

A novel micro-micro/mesoporous silicoaluminophosphate ZSM-5-SAPO-5/MCM-41 (define as MZS-5) composite material with regular spherical morphology was synthesized through a novel process of the self-assembly of CTAB surfactant micelles with silica-alumina source which originated from the alkaline treatment of ZSM-5 zeolite. The physical properties of the MZS-5 composite material were characterized by XRD, FT-IR, Nitrogen adsorption–desorption, SEM and Py-FTIR techniques. Catalytic tests showed that the MZS-5 composite catalyst exhibited higher catalytic activity compared with the conventional microporous ZSM-5, SAPO-5 zeolite and mesoporous Al-MCM-41 molecular sieve for catalytic cracking of 1,3,5-triisopropylbenzene (TIPB). The remarkable catalytic reactivity of TIPB molecules was mainly attributed to the presence of the hierarchical zeolite structure. In the MZS-5 structure, the mesopores provided pathways for transportation of larger molecules and the microporous ZSM-5 and SAPO-5 zeolite provided acidic sites for catalytic activity.  相似文献   

4.
甲醇制烯烃(MTO)被认为是最有希望以煤或天然气为原料替代石油制取烯烃的技术路线。具有CHA结构的SAPO-34分子筛是MTO反应生产乙烯和丙烯最理想的催化剂,但在甲醇转化过程中,芳香烃类中间体受到SAPO-34分子筛八元环微孔结构的限制,使催化剂孔道堵塞并覆盖其酸性位点,造成催化剂积炭失活。为了提高SAPO-34分子筛催化剂的寿命和低碳烯烃的选择性,改善传质并延缓焦炭的沉积至关重要。从构建多级孔结构、减小晶粒尺寸及调控分子筛酸性3个方面出发,总结了SAPO-34分子筛在MTO反应中的研究进展,并对今后催化剂的粒度、孔尺寸、酸性质等方向的改进及发展进行了展望。  相似文献   

5.
SAPO-18, which has a microporous framework structure related to, but crystallographically distinct from, that of the solid acid catalyst SAPO-34, was synthesized hydrothermally from a silicoaluminophosphate gel containing N,N-diisopropylethylamine as a structuredirecting template. Although both materials have similar Si/(Si + Al + P) ratios, the content of Brønsted acid sites in SAPO-18 is considerably less than that in SAPO-34. As catalysts for methanol conversion to light olefins, SAPO-18 and SAPO-34 have closely similar initial activity and selectivity, but the lifetime of SAPO-18 is distinctly superior to that of SAPO-34.  相似文献   

6.
由于小粒径、多级孔或兼具小粒径与多级孔结构的SAPO-11分子筛能够显著提高SAPO-11分子筛催化剂在烃类加氢异构化中的活性和选择性,近年来已成为烃类异构化催化剂研究的热点。本文按照SAPO-11分子筛的制备方法进行分类,系统介绍了小粒径、多级孔和兼具小粒径与多级孔结构的SAPO-11分子筛的制备及其临氢异构化性能,指出在今后的研究中,研究开发新的绿色高效合成方法,降低合成成本和减少环境污染是小粒径或(和)多级孔SAPO-11分子筛催化剂实现工业化应用亟待解决的突出问题和研究方向。  相似文献   

7.
The direct conversion of n-pentane to isopentene by dehydrogenation and isomerization in a single step was studied on Pt supported over SAPO-11, ferrierite (FER) and HZSM5 molecular sieves. The Pt/SAPO-11 presented the best selectivity to mono-branched pentenes. The characterization of acidic sites with isomers of propylamine revealed a better capacity for SAPO-11 to diffuse mono-branched amines and that is considered a consequence of its pore geometry, which could explain the obtained selectivity.  相似文献   

8.
采用水热合成法合成的SAPO-11分子筛,经酸洗、干燥和焙烧处理得H-SAPO-11分子筛,考察了预处理温度对催化剂物化性能的影响,采用XRD、XRF、IR和NH3-TPD等手段对催化剂进行表征。实验证明,500 ℃预处理后H-SAPO-11分子筛的结构缺陷较少,B酸位较多,骨架更完美;将其成型制成催化剂,对丁烯骨架异构化反应显示更优良的催化活性、选择性和稳定性。  相似文献   

9.
以三苯基膦为磷化剂,采用原位磷化法制备具有较高分散性的Ni_2P/Al_2O_3-SAPO-11催化剂,通过低温N2吸附-脱附、XRD、HRTEM、NH_3-TPD和Py-IR等对催化剂晶相结构、微观形貌和酸性质进行表征。以正十四烷为模型化合物,考察SAPO-11含量及工艺条件对正十四烷加氢异构化性能的影响。结果表明,最佳SAPO-11质量分数为40%,优化的工艺条件为:反应温度360℃,反应压力2 MPa,体积空速1. 5 h-1,氢烃体积比300,该条件下,正十四烷转化率为78. 1%,异构化选择性为89. 2%。  相似文献   

10.
As an effective non-petroleum based process for producing light olefins, the methanol-to-olefin(MTO) route has become an indispensable alternative to the industrial production of light olefins. The silicoaluminophosphate SAPO-34 zeolite(CHA-type structure) has proven to be an efficient industrial catalyst for the production of ethylene and propylene by the MTO reaction. However, the inherent structure and related diffusion limitations of SAPO-34 limit the mass transport and thus cause rapid deactivation of the catalyst. Fabrication of hierarchical SAPO-34 zeolite is one of the most effective strategies to address the intrinsic diffusion limitation. As simple, inexpensive, and efficient approach, the post-synthetic route has attracted considerable attention and widely used to introduce secondary meso-/macropores into the microporous SAPO-34 material. Significant effort has been dedicated to the development of post-synthesis strategies to prepare hierarchical SAPO-34 zeolite, thereby enhancing its catalytic performance in the MTO process. This mini-review addresses the post-synthesis preparation of hierarchical SAPO-34 catalysts and their MTO performance. Furthermore, some current problems and prospects of the post-synthesis route to hierarchical SAPO-34 catalysts are also revised. We expect this minireview to inspire the more efficient preparation of hierarchical SAPO-34 catalysts for the MTO process.  相似文献   

11.
As an effective non-petroleum based process for producing light olefins, the methanol-to-olefin (MTO) route has become an indispensable alternative to the industrial production of light olefins. The silicoaluminophosphate SAPO-34 zeolite (CHA-type structure) has proven to be an efficient industrial catalyst for the production of ethylene and propylene by the MTO reaction. However, the inherent structure and related diffusion limitations of SAPO-34 limit the mass transport and thus cause rapid deactivation of the catalyst. Fabrication of hierarchical SAPO-34 zeolite is one of the most effective strategies to address the intrinsic diffusion limitation. As simple, inexpensive, and efficient approach, the post-synthetic route has attracted considerable attention and widely used to introduce secondary meso-/macropores into the microporous SAPO-34 material. Significant effort has been dedicated to the development of post-synthesis strategies to prepare hierarchical SAPO-34 zeolite, thereby enhancing its catalytic performance in the MTO process. This mini-review addresses the post-synthesis preparation of hierarchical SAPO-34 catalysts and their MTO performance. Furthermore, some current problems and prospects of the post-synthesis route to hierarchical SAPO-34 catalysts are also revised. We expect this minireview to inspire the more efficient preparation of hierarchical SAPO-34 catalysts for the MTO process.  相似文献   

12.
针对SAPO- 11的一维十元环直孔道结构,设计了具有特殊分子结构的长链烷烃3-乙基-十一烷.3-乙基-十一烷与目前常用的长直链探针分子相比,具有能卡在SAPO- 11分子筛孔口的特点,因此可以作为特殊的长链探针分子,结合直链探针分子,对SAPO-11负载催化剂在长链正构烷烃异构化反应中的孔口催化机理进行研究.3-乙基...  相似文献   

13.
Adsorption of CO2 and CO at 25 °C has been conducted using commercially-available (Y, ZSM-5) and laboratory-synthesized (SSZ-13, SAPO-34) H-zeolites with different framework topologies and chemical compositions, and their textual and surface properties have been characterized by N2 sorption and NH3 adsorption techniques. All the zeolites were microporous, although ZSM-5 and SSZ-13 apparently showed a mesoporous sorption behavior due to the interparticle spaces. The zeolites had Si/Al values in the order of SSZ-13 (16.44) > ZSM-5 (16.08) ? Y (2.82) ? SAPO-34 (0.19). Regardless, high CO2 adsorption capacity was obtained for SSZ-13 and SAPO-34 with a CHA framework. The FAU zeolite Y with the highest micropore volume showed less CO2 adsorption than the CHA zeolites and the MFI-type ZSM-5 yielded the poorest performance. Probing acid sites in the H-form zeolites using NH3 disclosed that these all contain both weak and strong acid sites with significant dependence of their strengths and amounts on the topology. The acid strength of the weak acid sites in the CHA zeolites was the weakest, which might allow a stronger interaction with CO2. The H-zeolites gave CO2/CO selectivity factors that were in the range of 4.61–11.0, depending on the framework topology.  相似文献   

14.
The reversibility of skeletal isomerization between n-butenes and iso-butene has been studied over various solid acid catalysts including ferrierite and ZSM-5 zeolites, mesoporous materials and amorphous alumina in order to identify the cause for their different selectivities for skeletal isomerization. A remarkable selectivity for the reverse skeletal isomerization of iso-butene to n-butenes is found from ferrierite, fluorinated alumina with low fluorine loading and the KIT-1 mesoporous material with low aluminium content; which also demonstrate high selectivity for forward skeletal isomerization. Catalysts that are not selective for forward isomerization exhibit poor selectivity for reverse isomerization. The preference for multimolecular oligomerization due to high concentrations of activated reactants in the pores of nonselective catalysts reduces their selectivity for skeletal isomerization. Thus, the suppression of oligomerization over the selective catalyst makes the cracking of oligomers impossible and increases selectivity. This is achieved by a sparse distribution of activated reactants caused by specific pore structures or low concentrations of strong acid sites. The reversibility of skeletal isomerization and the adsorbed state of butenes are discussed in relation to the monomolecular reaction path.  相似文献   

15.
The effects of the synthetic condition of SAPO-11 molecular sieves on ethanol dehydration to ethylene were studied. Product-compositions, ethanol conversion, and selectivity to ethylene of synthesized and commercial SAPO-11 molecular sieves were compared. Results are as follows: the optimal synthetic conditions for SAPO-11 molecular sieves are adding pseudoboehmite before orthophoshporic, using di-n- propylamine as the template, having a mass fraction of 40% colloidal silica as the silica source and the starting gel obtained, and running at 200°C for 48 h. From the patterns of NH3-TPD, the amount of acid synthesized by SAPO-11 molecular sieves is less than that by commercial SAPO-11 molecular sieves, and has a stronger weak acid. Also, ethanol conversion and selectivity to ethylene reached 99% at 280°C on synthesized SAPO-11, lower by 20°C compared to commercial SAPO-11. For two SAPO-11 molecular sieves, the by-products in the gas phase are mainly ethane, propane, propene, isobutane, n-butane, propadiene, butylene and some higher hydrocarbons. The by-products in the liquid phase are ethyl ether and acetaldehyde.  相似文献   

16.
On the skeletal isomerization of 1-butene, mesoporous materials with mesopores too large to expect any shape selectivity have been used in order to investigate the effects of the concentration of acid sites on the conversion of 1-butene and the selectivity for isobutene. The concentrations of acid sites can be varied through the control of the Si/Al ratio. The conversion of 1-butene increases with increasing the aluminium content of mesoporous materials, while the selectivity for isobutene decreases. The results of ammonia TPD, IR measurement of 1-butene adsorption, and TG analysis of used catalysts indicate that distant location of activated 1-butene molecules induces the monomolecular reaction over the mesoporous materials with low aluminium content, resulting in high selectivity for skeletal isomerization. On the mesoporous material with high aluminium content, however, the high concentration of activated 1-butene molecules accelerates the multimolecular oligomerization and, thus, reduces the selectivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
SAPO-11 molecular sieves were synthesized using single agent (i.e. diethylamine (DEA), di-iso-propylamine (DIPA) and di-n-propylamine (DPA)) or a mixture of DEA and DIPA (named DEPA) as the template under hydrothermal conditions. XRD indicated that the directing effect of different templates for AEL structure decreased in the order of DEPA > DPA > DIPA > DEA. 29Si MAS NMR showed that although all SAPO-11 samples synthesized at same Si content, that prepared with the mixed template contained more Si (4Al) sites, whereas Si (nAl, 4-nSi, 0 < n < 4) environments were predominant in the samples synthesized with single template. The results indicated that the mixed template led to a better Si dispersion and then increased the number of total acid sites of SAPO-11. In the isomerization of n-tetradecane over different Pt/SAPO-11 catalysts, the sample prepared with DEPA showed high catalytic activity and selectivity for i-C14, which were related to the most abundant weak acid sites of the sample.  相似文献   

18.
综述了常用分子筛催化剂的研究现状及发展趋势,总结了烷烃异构化的反应特点,介绍了具有代表性的中孔分子筛类催化剂、硅磷铝分子筛类催化剂、杂多酸等催化剂的合成方法、条件及应用前景。着重介绍了各类催化剂的性能和最新研究状况,具体包括MCM-41、SAPO-11、沸石分子筛等,同时对目前面临研究问题进行概述。最后指出绿色、中低温合成烷烃异构化催化剂将是未来的研究热点。  相似文献   

19.
Methanol-to-olefin (MTO) conversion on zeolites has encountered severe coke deposition and rapid deactivation. Creating different levels of porosity is essential to mitigate such issues. Herein, we demonstrate a facile and green strategy to synthesize uniform and hierarchically macro/mesoporous ZSM-5 microspheres by combining spray-freeze drying and steaming-assisted crystallization (SAC). The structure, crystallinity, and porosity of the zeolite microspheres are controlled by adjusting the water/gel mass ratio and time in the SAC process. The structure evolution during the SAC process is revealed. In the catalytic MTO reaction, the representative hierarchically porous ZSM-5 catalyst exhibits superior catalytic performance. At a very high weight hourly space velocity of 18 h−1, it shows a dramatically prolonged lifetime (47 h at >99% conversion) and much-improved selectivity to ethylene and propylene compared with the conventional microporous ZSM-5 and nano-sized ZSM-5. The enhanced performance is originated from the hierarchical structure and suitable acidity of the ZSM-5 microspheres.  相似文献   

20.
利用磷酸硅铝分子筛的晶化母液合成SAPO-34分子筛,采用XRD、SEM和N_2吸附-脱附进行表征。结果表明,合成的样品为具有多级孔结构的SAPO-34分子筛,该分子筛催化剂在甲醇制烯烃反应中表现出高低碳烯烃选择性及较长的寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号