首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
直接数字频率合成(DDS)技术由于输出杂散信号多且难预测,限制了其发展和应用。依据DDS基本原理,利用傅立叶变换法分析了理想DDS输出频谱特征,推导了相位截断引入杂散信号的频谱分布特点。采用相位随机抖动注入技术,对DDS杂散信号抑制进行了系统建模和仿真,结果证明该技术对DDS杂散抑制效果显著,从而达到了改善DDS相位截断杂散的目的。  相似文献   

2.
分析了直接数字频率合成技术(DDS)电路中2类主要的杂散来源——量化误差和相位截断。首先从DDS内部原理入手,介绍并仿真了相位抖动法对DDS输出杂散的抑制效果;然后从DDS外部电路入手,结合锁相环技术(PLL),介绍了DDS+PLL优化法。经过工程实践,获得了低杂散、小步进的理想输出信号。  相似文献   

3.
测试通用模拟器为新一代自动测试系统(Automatic Test System,ATS)的重要组成部分;通用模拟器的基带信号由任意信号发生器提供,直接数字合成器(Direct Digital Synthesizer,DDS)是信号发生器的核心部件之一;DDS具有频率分辨率高、频率捷变等诸多优点,但其缺点是杂散抑制性能较差,而相位截断误差是DDS输出信号误差的主要来源;针对相位截断误差问题,阐述了DDS基本原理,分析了DDS相位截断杂散信号,提出了一种抑制DDS相位截断杂散信号的方法;MATLAB仿真结果表明,该方法能够有效抑制相位截断误差。  相似文献   

4.
通过修改传统的直接数字频率合成(DDS)设计方法,提出了一种基于查找表的无相位截断误差的DDS设计方案并用FPGA平台予以实现。该方案不做相位截断,并利用幅度量化的数学特性建立查找表,在查找表深度可容忍的前提下大幅降低了杂散噪声,减轻了存储量对提高信号精度的限制,消除了传统设计中相位截断给最终输出信号频谱的影响,提高了DDS的性能。  相似文献   

5.
数字频率源是现代雷达系统的重要组成部分,其技术指标直接影响系统的性能.介绍了直接数字合成频率源DDS的基本工作原理及定性分析了其固有杂散和相位噪声形成原因,详细分析了步进频率雷达获取高分辨目标距离剖面(一维距离像)原理.基于MATLAB仿真证明了DDS因相位截断和幅度量化产生的杂散服从均匀随机统计分布特性,仿真了服从均匀随机统计分布特性的DDS杂散对步进频率雷达距离测量性能的影响.分析和仿真的结果对系统设计具有一定的参考价值.  相似文献   

6.
频率合成源是射频发生和频谱分析中最重要的组成之一,评价合成源性能指标的是输出信号的相位噪声、杂散、频率分辨率和频率切换时间.本文通过分析传统锁相环原理,提出一种通用的超低相位噪声合成源设计方案(带宽100MHz以内).在锁相环基础上,通过引入直接数字合成(Direct digital synthesizer,DDS)混频鉴相技术,使得到的射频信号理论值达到0.1mHz的频率分辨率,同时将带内相位噪声指标优化17dB以上.新方案同时兼顾了杂散和频率切换时间指标,保障合成源的输出信号稳定可靠,使其在自动测试领域拥有广阔的应用前景.  相似文献   

7.
频率源是现代雷达电子系统的重要组成部分,是整个雷达的心脏。直接数字频率合成器(DDS)具有频率转换快、频率分辨率高、输出频率相对带宽较宽、产生波形灵活、相位连续及体积小等优点,缺点是工作频率有限,杂散较高。分析在理想条件下DDS输出信号的频谱,在此基础上,分析并仿真影响DDS杂散噪声的原因,提出几种有效地抑制DDS杂散的办法,对改进DDS电路的杂散有很大的促进作用。  相似文献   

8.
依据DDS(直接数字频率合成)输出频谱特性和Cordic(坐标旋转数字计算机)算法基本原理,针对基于Cordic结构的DDS设计中相位角迭代方向不确定性和旋转角度非整周期性的缺陷,采用了相位角分阶段旋转法和多区域相位映射法对Cordic结构的DDS进行改进。通过Matlab输出信号和频谱仿真验证了所用方法的正确性和可行性,使用VHDL语言设计出16级流水线结构的改进后Cordic型DDS。Quartus II综合编译和Modelsim仿真后得出改进后DDS计算误差为10-5、硬件消耗仅为23%、SFDR(无杂散动态范围)扩至200 dB。理论分析和实验结果证明了这两种方法改进综合后抑制杂散的有效性。  相似文献   

9.
直接数字频率合成器(DDS)具有捷变频、合成任意波形、频率分辨率高等优点,是新一代数字合成宽带雷达、通信信号产生的新技术,但是因为DDS输出频谱杂散电平和谐波电平偏高,为了获得宽带高纯频谱雷达信号需采用DDS+倍频技术。  相似文献   

10.
针对正弦信号发生器设计中,直接数字频率合成技术存在相位截断误差的问题,以神经网络为技术基础,以FPGA为硬件核心,提出了一种新型的高频正弦信号发生器设计方案,有效克服了上述问题。阐述了这种方案的工作原理、电路结构以及设计思路和方法。经过设计和仿真测试,系统的主时钟频率可以达到95 MHz且不占用ROM存储空间,输出的正弦信号为2.5 MHz时,输出信号的杂散抑制为80 dB,可见该方案资源占用率低,无相位截断,输出信号杂散小且输出频率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号