首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
正置倒置异质结有机小分子太阳能电池   总被引:2,自引:2,他引:0  
以MoO3为阳极修饰层,以Rubrene/C60为活性层,制备了正置和倒置异质结有机小分子太阳能电池。实验结果表明倒置器件的开路电压Voc、短路电流密度Jsc、填充因子FF和功率转换效率η比正置结构的器件分别提高了34%、20%、25%和102%。当插入BCP阴极缓冲层后,阻挡了热的Al原子对C60层的破坏,对倒置器件的性能没有明显的影响,但却显著改善了正置器件的性能,并分析了MoO3和BCP对倒置和正置器件的作用。  相似文献   

2.
采用聚氧化乙烯(PEO)作为聚合物太阳能电池的阴极修饰层,以P3HT:PCBM为活性层制备了聚合物本体异质结太阳能电池。考察了PEO的厚度对器件光伏性能及稳定性的影响。比较了加入PEO修饰层前后器件的稳定性,研究了采用PEO修饰层前后器件电阻的差异。结果表明:加入PEO作为阴极修饰层后器件的光电性能(JSC,VOC,FF,PCE)均有明显提高,而器件的串联电阻Rs则有了明显降低。没有阴极修饰层的器件的初始光电转换效率为1.92%,90 h后衰减为初始值的5%;而加入PEO修饰层后初始光电转换效率为3.36%,90 h后仅衰减为初始值的20%,光电转换效率提高了75%,稳定性提高了3倍。  相似文献   

3.
汪骏康  徐静平 《半导体光电》2012,33(6):799-804,808
采用Afors-het软件模拟分析了结构为TCO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p+)/Ag的p型硅衬底异质结太阳电池的性能,研究了各层厚度、带隙、掺杂浓度以及界面态密度等结构参数和物理参数对电池性能的影响。通过模拟优化,结合理论分析和实际工艺,得到合适的各结构参数取值。采用厚度薄且掺杂高的窗口层,嵌入本征层以钝化异质结界面缺陷,合理利用背场对于少子的背反作用,获得了较佳的太阳电池综合性能:开路电压Voc为678.9mV、短路电流密度Jsc为38.33mA/cm2、填充因子FF为84.05%、转换效率η为21.87%。  相似文献   

4.
研究了采用甚高频等离子体增强化学气相沉积(VHF-PECVD)技术沉积从微晶相向非晶相相变的过渡区p层,并将其作为电池的窗口层应用到高速沉积的非晶硅薄膜电池中。通过调整p层的沉积参数,获得不同p层的暗电导率从1.0E-8S/cm变化到1.0E-1S/cm,并获得了从微晶相向非晶相转变的过渡区p层。实验发现,电池的开路电压Voc随p层SiH4浓度的增加先增加后降低,当p层处在过渡区时达到最大;p层处在过渡区时电池的短路电流Isc和填充因子FF都得到了不同程度的提高。在p/i界面引入buffer层后,能进一步显著提高电池的FF和Voc。在过渡区p层作为电池窗口层,没有背反射电极,本征层沉积速率为1.5nm/s情况下获得效率达8.65%(Voc=0.89V,Jsc=12.90mA/cm2,FF=0.753)的高速非晶硅薄膜电池。比较了过渡区P层与P-a-SiC:H分别作为电池窗口层对于电池性能特别是FF的影响,由于存在结构演变的原因,FF对于过渡区P层厚度的依赖大于后者。  相似文献   

5.
实验制备了ITO/V2O5/Rubrene/C70:Rubrene/C70/BCP/Al的PIN结构有机太阳能电池(OSC),其中Rubrene、Rubrene:C70和C70分别作为P、I和N层。通过改变I层厚度,研究了I层对OSC性能的影响及作用机理。实验显示,I层厚为5nm时器件的功率转换效率η达到最大值为1.580%,同时获得了较大的短路电流密度Jsc为4.365mA·cm-2;相对PN结构器件,功率转化效率η短路电流密度Jsc和填充因子FF分别提高了40.3%、29.7%和8.2%。我们认为,I层中激子分离效率的提高导致了器件性能的改善。  相似文献   

6.
通过将聚乙二醇(PEG)掺入活性层制备聚合物太阳 能电池,利用PEG的迁移特性获得阴极修饰层,研 究PEG阴极修饰层对聚合物太阳能电池光电性能的影响。X射线光电子能谱(XPS)分 析表明,掺入活性层中的 PEG迁移到活性层与Al电极之间,形成了阴极缓冲层。吸收光谱、电流密度-电压 特性曲线和外量子 效率谱的分析表明,PEG阴极缓冲层的形成改善了活性层与阴极的界面接触特性, 降低了活性层与电 极之间的能级势垒,有利于载流子传输,因此显著地改善了聚合物太阳能电池的光电性能, 使得器件的开 路电压Voc、短路电流密度Jsc和填充因子(FF)都有明显提高。当P3HT:PCBM 活性层中掺入体积比为0.5%的PEG时,聚合物太阳能电池的能量转换 效率(P CE)最高,达到了3.07%,比未掺杂PEG的参考器件提 高了38.5%。  相似文献   

7.
采用AFORS-HET软件对TCO/nc-SiC∶H(p)/nc-Si∶H(i)/c-Si(n)/nc-Si∶H(n+)/Al异质结太阳电池进行了模拟,分别讨论了窗口层、本征层、界面态和背场对太阳电池性能参数的影响。模拟结果表明,厚度尽可能薄的p层能减少入射光及光生载流子在窗口层的损失,对应最佳的窗口层禁带宽度为1.95eV。本征层的引入主要是钝化异质结界面,降低界面态的影响,提高电池转换效率。合理的背场设计可提高电池的转换效率1.7个百分点左右,此时最佳的异质结太阳电池的性能参数为:开路电压Voc=696.1mV,短路电流密度Jsc=38.49mA/cm^2,填充因子FF=83.52%,转换效率η=22.38%。  相似文献   

8.
多晶硅太阳电池的一维模拟计算   总被引:1,自引:0,他引:1  
提出了多晶硅太阳电池的一维物理模型,并对其在AM1.5太阳光照下的电池的短路电流密度Jsc、开路电压Voc、填充因子FF和转换效率η进行了模拟计算,重点分析了多晶硅晶粒尺寸和电池厚度对n /p结构的多晶硅太阳电池性能的影响.模拟中主要引入载流子的有效迁移率和有效扩散长度两个物理量.模拟结果表明,电池效率在厚度50μm以内随厚度的增加而增大,当厚度大于50μm以后趋于饱和;当晶粒尺寸在100 μm以内时,电池特性随晶粒尺寸的增加而显著提高,晶粒进一步增大时效率趋于饱和,此时背面复合速率的影响变大.  相似文献   

9.
从电池的结构参数及器件工艺等方面分析了Ge底电池的开路电压Voc、短路电流Isc和填充因子FF的影响.结果表明:控制发射层的表面复合,并减薄其厚度可以提高开路电压Voc,并可以有效提高短路电流Isc;调整相应的器件工艺有利于填充因子FF的提高.采用上述改进措施,成功得到Voc达到287.5mV,Isc达到73.13mA/cm2,效率达到7.35%的Ge太阳电池.  相似文献   

10.
从电池的结构参数及器件工艺等方面分析了Ge底电池的开路电压Voc、短路电流Isc和填充因子FF的影响.结果表明控制发射层的表面复合,并减薄其厚度可以提高开路电压Voc,并可以有效提高短路电流Isc;调整相应的器件工艺有利于填充因子FF的提高.采用上述改进措施,成功得到Voc达到287.5mV,Isc达到73.13mA/cm2,效率达到7.35%的Ge太阳电池.  相似文献   

11.
Use of a polyfluorene derivative (WPF-oxy-F) as the cathode interfacial layer was investigated for low-cost and high-efficiency organic solar cells (OSCs) based on poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM). Insertion of the WPF-oxy-F interfacial layer between the P3HT/PCBM active layer and the metal cathode increased overall power conversion efficiency from 2.95% to 3.77% primarily due to the improved open circuit voltage and enhanced fill factor, resulting from a reduction of the metal work-function through the introduction of WPF-oxy-F.  相似文献   

12.
A new acceptor material, Indene-C60 bisadduct (ICBA), has reportedly improved the open circuit voltage. The published literature has reported that almost all groups dissolve the ICBA and P3HT in DCB. Nevertheless, the solubility of ICBA in DCB is poor, leading to high leakage current and lower open circuit voltage. To enhance the solubility of ICBA in photoactive ink, we use CB and DCB as a mixed solvent to fabricate the inverted polymer solar cells. We then add conductive polymer polyvinylcarbazole (PVK) to reduce the horizontal phase separation and control the drying time of the active layer by adjusting the ratios of DCB and CB. As a result, the open circuit voltage of inverted polymer solar cells is enhanced from 0.66 V to 0.82 V and the power conversion efficiency (PCE) improve from 2.6% to 4.27%.  相似文献   

13.
In this work, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) was improved by 14.8% (from 11.09% to 12.73%) by using 1,8-diiodooctane (DIO) as a solvent additive during the deposition of phenyl-C61-butyric acid methyl ester (PCBM) layers. The primary reasons for the PCE improvement are the simultaneous increases in the short-circuit current density, fill factor, and open-circuit voltage. The incorporation of DIO improves the morphology of the electron transport layer (PCBM), which plays an important role in charge dissociation, transportation, and collection. Our results indicate that engineering the morphology of the electron transport layer is a simple and effective method for developing high-performance PSCs.  相似文献   

14.
A series of poly(3-hexylthiophene) (P3HT)/(6,6)-phenyl C60 butyric acid methyl ester (PCBM) bulk hetero-junction polymer solar cells were fabricated with different iodine (I2) doping concentrations. The short circuit current density (Jsc) was increased to 8.7 mA/cm2 from 4 mA/cm2, meanwhile the open circuit voltage (Voc) was decreased to 0.52 V from 0.63 V when the iodine doping concentration is 5%. The optimized power conversion efficiency of polymer solar cells (PSCs) with iodine doping is about 1.51%, which should be attributed to the better charge carrier transport and collection, and the more photon harvesting due to the red shift of absorption peaks and the widened absorption range to the longer wavelength. The morphology and phase separation of polymer thin films were measured by atomic force microscopy (AFM). The phase separation of P3HT and PCBM has been distinctly increased, which is beneficial to the exciton dissociation. The photocurrent density of PSCs with iodine doping was increased compared with the PSCs without iodine doping under the same effective voltage.  相似文献   

15.
The photovoltaic stability of polymer solar cells (PSCs) can be greatly improved by adopting an inverted device structure. This paper reports high-performance inverted PSCs with lead monoxide (PbO)-modified indium tin oxide (ITO) as the cathodes. A thin PbO layer can effectively lower the work function of ITO from 4.5 to 3.8 eV. The optimal inverted PSCs with poly(3-hexylthiophene) (P3HT) as the donor and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor exhibited high photovoltaic performance: open-circuit voltage of 0.59 V, short-circuit current density of 10.8 mA cm−2, fill factor of 0.632, and power conversion efficiency of 4.00% under simulated AM1.5G illumination (100 mW cm−2). The photovoltaic efficiency is significantly higher than that of the control inverted PSCs with unmodified ITO as the cathode. It is even better than that of the control PSCs with normal architecture, which have an optimal efficiency of 3.5%. The lowering in the work function by the PbO modification is attributed to the charge transfer between PbO and ITO, as evidenced by the X-ray photoelectron spectra.  相似文献   

16.
考虑到nip型[ITO/a-Si(n)/a-Si(i)/a-Si(p)/Al]非晶硅光伏电池的各膜层厚度、掺杂浓度等因素,对非晶硅光伏电池的转换效率、填充因子、开路电压等性能参数进行了数值分析与讨论。结果表明,随p型层厚度的增加,光伏电池的短路电流密度、转换效率、开路电压值都有所增加。当本征层的厚度增加时,短波段内的光谱响应变差、内量子效率下降。当n型层厚度为5 nm,本征层厚度为5 nm,p型层厚度为10μm,受主掺杂浓度为2.5×1019cm-3,施主掺杂浓度为1.5×1016cm-3时,转换效率可达9.728%。  相似文献   

17.
To improve the power conversion efficiency of polymer solar cells, the blended P3HT:PCBM:pentacene active layer was used to balance hole–electron mobility and roughen surface. Using space-charged-limited current model to analyze the hole-only devices and the electron-only devices, the P3HT:PCBM:pentacene (weight ratio = 1:0.8:0.09) active layer exhibited balance hole–electron mobility. Compared with the power conversion efficiency of 3.46% of the conventional polymer solar cells using P3HT:PCBM (1:0.8) active layer, the power conversion efficiency of 4.42% was obtained. In other words, the power conversion efficiency was improved about 27.5%.  相似文献   

18.
Inverted polymer solar cells were fabricated by adding the amphiphilic surfactant ‘Surfynol 104 series’ to Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a anode buffer layer by solution process. With the introduction of Surfynol 104 series-added PEDOT:PSS, it was able to form a homogeneous film by adjusting the wettability of a hydrophobic poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) film. With decrease in series resistance (RS) and increase in shunt resistance (RSH), as a result, the short circuit current density (JSC), open circuit voltage (VOC) and fill factor (FF) of the optimized device were 10.2 mA/cm2, 0.63 V and 61.3%, respectively, calculated the power conversion efficiency (PCE) was 4.0%. In addition, the air stability of the fabricated device was improved.  相似文献   

19.
This Full Paper focuses on the preparation of single‐walled or multi‐walled carbon nanotube solutions with regioregular poly(3‐hexylthiophene) (P3HT) and a fullerene derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl[6,6]C61 (PCBM) using a high dissolution and concentration method to exactly control the ratio of carbon nanotubes (CNTs) to the P3HT/PCBM mixture and disperse the CNTs homogeneously throughout the matrix. The CNT/P3HT/PCBM composites are deposed using a spin‐coating technique and characterized by absorption and fluorescence spectroscopy and by atomic force microscopy to underline the structure and the charge transfer between the CNTs and P3HT. The performance of photovoltaic devices obtained using these composites as a photoactive layer mainly show an increase of the short circuit current and a slight decrease of the open circuit voltage which generally leads to an improvement of the solar cell performances to an optimum CNT percentage. The best results are obtained with a P3HT/PCBM (1 : 1) mixture with 0.1 wt % multi‐walled carbon nanotubes with an open circuit voltage (Voc) of 0.57 V, a current density at the short‐circuit (Isc) of 9.3 mA cm–2 and a fill factor of 38.4 %, which leads to a power conversion efficiency of 2.0 % (irradiance of 100 mW cm–2 spectroscopically distributed following AM1.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号