首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 171 毫秒
1.
高超声速飞行器非线性鲁棒控制律设计   总被引:1,自引:0,他引:1  
高超声速飞行器具有模型非线性程度高、耦合程度强、参数不确定性大、抗干扰能力弱等特点,其自主控制具有较大的挑战.论文提出了一种基于鲁棒补偿技术和反馈线性化方法的非线性鲁棒控制方法.文中首先采用反馈线性化的方法对纵向模型进行输入输出线性化,实现速度和高度通道的解耦和非线性模型的线性化.针对得到的线性模型,设计包括标称控制器和鲁棒补偿器的线性控制器.基于极点配置原理,设计标称控制器使标称线性系统具有期望的输入输出特性,利用鲁棒补偿器来抑制参数不确定性和外界扰动对于闭环控制系统的影响.基于小增益定理,证明了闭环控制系统的鲁棒稳定性和鲁棒跟踪性能.相比于非线性回路成形控制方法,仿真结果表明了所设计非线性鲁棒控制算法的有效性和优越性.  相似文献   

2.
论文将讨论具有控制输入幅值限制的机器人轨迹跟踪控制问题。将利用基于信号补偿的鲁棒控制方法设计机器人的子关节系统控制器。该控制器由标称控制器和鲁棒补偿器组成。标称控制器对于一标称受控对象实现所希望的轨迹跟踪特性,鲁棒补偿器则用于减小实际受控对象和标称受控对象之间的差异对跟踪特性的影响。当输入存在饱和约束的情况下,对鲁棒补偿器进行了修改,并且基于演化寻优的方法求取鲁棒补偿器参数。  相似文献   

3.
参数不确定机器人分散鲁棒跟踪控制   总被引:3,自引:1,他引:3  
提出了一种新的参数不确定机器人分散控制器设计方法.首先将关节子系统的动力学模型分解为人工标称模型和非线性时变不确定模型两部分;然后分别设计相应的标称控制器和鲁棒补偿器.标称控制器使得标称闭环系统具有理想的跟踪性能;鲁棒补偿器可以抑制参数不确定和关节间非线性耦合等因素的影响,实现鲁棒跟踪.所设计的控制器只需要局部关节的位置反馈,具有易于实现和可在线调整的优点.仿真结果说明了该方法的有效性.  相似文献   

4.
针对四旋翼无人机轨迹跟踪的容错控制问题,提出了一个鲁棒[H∞]控制和干扰观测器与故障估计器相结合的容错复合控制器的方法。在外部有界扰动和加性故障的条件下,实现对四旋翼无人机的轨迹跟踪。将四旋翼无人机非线性动态模型解耦成独立的外环位置控制系统和内环角度控制系统,引入区间矩阵对系统参数进行描述,使用干扰观测器和故障估计器进行干扰和故障的估计和补偿。然后设计一个复合控制器既能更好地抑制干扰又能保证无人机在自身存在故障的情况下平稳飞行。通过仿真证明该方法的有效性。  相似文献   

5.
为解决四旋翼无人机在饱和输入下的轨迹跟踪控制问题,同时兼顾系统存在的参数不确定性和外部风力扰动影响,设计了一种改进的抗干扰自适应鲁棒滑模控制方法;基于六自由度架构,设计四旋翼无人机简化的系统模型,进而降低控制器设计的复杂程度;引入带有误差信号的滑模函数,设计带有误差信号的饱和补偿自适应控制律,同时增加鲁棒控制项,降低由于饱和输入问题带来的抖振影响,并减小参数不确定和外部风力扰动对系统稳定性的影响;系统模型与抗干扰自适应控制律相结合,形成了改进的抗干扰自适应鲁棒滑模控制策略,实现四旋翼无人机的位置轨迹和姿态轨迹的稳定跟踪;最后通过数值仿真与传统PD控制算法进行仿真比较,验证控制方法的有效性和优越性。  相似文献   

6.
针对六自由度小型四旋翼无人机在轨迹跟踪控制过程中,单一控制器构成的控制系统存在外部未知干扰,系统的鲁棒性以及轨迹跟踪精度容易产生较大的波动问题,该文章提出了一种基于固定时间扰动观测器的全闭环控制方案,即针对位置与姿态的双闭环控制;首先利用固定时间理论设计了两个扰动观测器,在固定时间内对扰动做出估计并进行补偿;在此观测器对扰动值的精确估计基础之上,设计了两个具有扰动补偿能力的非线性跟踪控制器;李雅普诺夫稳定性理论证明了所述方法的有效性;仿真实验中,为对比所述控制方法的有效性,同时采用传统单一控制器构成的无人机控制系统进行对比分析;在无人机质量为m=1.44 kg、环境重力加速度为g=9.8 m/s2以及其他模型参数一致的前提下,进行大量的仿真实验验证了所提出的基于固定时间扰动观测器的扰动补偿控制系统,能够保证小型四旋翼无人机六自由度受到复杂外部干扰时准确估计出外部干扰值,并实现无人机进行高精度轨迹跟踪控制,且轨迹跟踪精度与抗扰性能皆优于传统单一控制器构成的无人机控制系统.  相似文献   

7.
针对不确定刚体连杆机器人在动力学建模时参数不精确以及未被考虑的干扰因素可能引起的控制系统品质的恶化问题,提出一种轨迹跟踪控制方案。控制器由基于标称模型设计的计算力矩控制器和基于不确定性因素设计的鲁棒跟踪补偿控制器组成,结构比较简单。计算力矩控制器使标称系统跟踪期望轨迹;鲁棒补偿控制器则用于消除参数误差带来的不确定性影响。理论分析和仿真证明了控制方法的有效性。  相似文献   

8.
司勇  王兆魁  李东方  吴奇 《测控技术》2023,42(2):99-107
为了降低外界环境对四旋翼无人机飞行轨迹的扰动性,提高无人机的控制精度,提出1种基于滑模控制的四旋翼无人机参数预测和抗扰动的自适应轨迹跟踪控制器。这种控制器对四旋翼无人机系统的不确定状态参数、气流、风阻和执行器故障等外界扰动进行预测,实现了对系统输入的状态补偿和扰动补偿,提高了无人机的轨迹跟踪效率和抗扰动能力,消除了机体在飞行过程中的抖振现象,提高了无人机系统对环境的适应性和控制器的稳定性。通过仿真实验,分析了四旋翼无人机在不同控制器作用下的轨迹跟踪性能曲线,验证了所提出的控制器的优越性和有效性。  相似文献   

9.
针对飞行环境不断变化的四旋翼无人机轨迹跟踪问题,提出了基于区间矩阵的鲁棒跟踪控制策略.首先,将四旋翼无人机非线性动态模型解耦为外环位置控制系统和内环角度控制系统.接着,考虑到飞行环境变化引起的升力系数、中高速飞行下不可忽略的阻力系数等参数的不确定性,引入区间矩阵对内外环系统的系统参数进行描述,并对内外环控制系统设计鲁棒H_∞反馈控制策略来抑制有界外部扰动.然后,根据李雅普诺夫稳定性定理得到了使外环系统指数渐近稳定和内环系统鲁棒渐近稳定且均满足H_∞性能指标的LMI充分条件,同时,给出了控制器增益的求解方法.最后,仿真及实验结果结果验证了所提方法的鲁棒性、优越性和有效性.  相似文献   

10.
本文主要研究了四旋翼无人机在外部干扰、执行器存在部分失效和偏置故障并发情况下有限时间轨迹跟踪的控制问题. 通过分析四旋翼无人机动力学特性, 构建了带有外部干扰、执行器机构故障的动力学模型. 基于鲁棒全局快速终端滑模控制算法, 设计了一种有限时间容错控制器, 提高了系统对故障的响应速度. 其次, 针对常值/时变故障和干扰,在控制器设计中采用改进的连续函数进行补偿, 减少了由切换函数引起的系统抖振, 并基于Lyapunov函数对控制器的稳定性进行了分析. 最后, 通过仿真实验验证了所设计控制器的有效性和可靠性, 同时存在执行器故障和外部干扰的情况下, 无人机能够实现较好的轨迹跟踪性能.  相似文献   

11.
The output tracking controller design problem is dealt with for a class of nonlinear strict-feedback form systems in the presence of nonlinear uncertainties, external disturbance, unmodelled dynamics and unknown time-varying virtual control coefficients. A new method based on signal compensation is proposed to design a linear time-invariant robust controller, which consists of a nominal controller and a robust compensator. It is shown that the closed-loop control system with a controller designed by the proposed method has robust asymptotical practical tracking property for any bounded initial conditions and robust tracking transient property if all initial states are zero.  相似文献   

12.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Output tracking controller design problem is dealt with for a class of nonlinear systems in strict-feedback form in the presence of time-varying nonlinear uncertainties and unmodeled dynamics with multi-operation points. A new method based on signal compensation is proposed to design a robust controller, which consists of a nominal controller and a robust compensator. It is shown that semiglobal robust tracking property can be achieved. A new feature of our results is that the controller is a linear and time-invariant one and “explosion of complexity” problem is avoided.  相似文献   

14.
In this paper, the output feedback consensus problem of high-order multi-agent systems with nonlinear uncertainties is researched by the robust control method. By the dimensional extension of the observation matrix, the consensus control problem is transformed into a stability problem. Then the robust controller is designed by combining the nominal controller and the robust compensator. The nominal controller can obtain desired nominal performance based on the output informations. The robust compensator, which relys on robust signal compensation technology, is order to suppress the nonlinear uncertainties. According to the proposed method, output consensus error can be guaranteed as small as desired. Finally, simulation results are given to illustrate the effectiveness of this control method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号